首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of the possibilities of pyrolysis for recovering wastes of the rope's industry has been carried out. The pyrolysis of this lignocellulosic residue started at 250 °C, with the main region of decomposition occurring at temperatures between 300 and 350 °C. As the reaction temperature increased, the yields of pyrolyzed gas and oil increased, yielding 22 wt.% of a carbonaceous residue, 50 wt.% tars and a gas fraction at 800 °C. The chemical composition and textural characterization of the chars obtained at various temperatures confirmed that even if most decomposition occurs at 400 °C, there are some pyrolytic reactions still going on above 550 °C. The different pyrolysis fractions were analyzed by GC–MS; the produced oil was rich in hydrocarbons and alcohols. On the other hand, the gas fraction is mainly composed of CO2, CO and CH4. Finally, the carbonaceous solid residue (char) displayed porous features, with a more developed porous structure as the pyrolysis temperature increased.  相似文献   

2.
All-solid-state phosphate symmetric cells using Li3V2(PO4)3 for both the positive and negative electrodes with the phosphate Li1.5Al0.5Ge1.5(PO4)3 as the solid electrolyte were proposed. Amorphous Li1.5Al0.5Ge1.5(PO4)3 was added into the electrode to increase the interface area between the active materials and the electrolyte. Any other phases were not formed at the electrode/electrolyte interface even after hot pressing at 600 °C. The discharge capacity was 92 mAh g? 1 at 22 µA cm? 2 at 80 °C, and 38 mAh g? 1 at 25 °C, respectively. Symmetric cell configuration leads to simplify the fabrication process for all-solid-state batteries and will reduce manufacturing costs.  相似文献   

3.
Zirconium treated graphite tubes were investigated and compared with non-treated and palladium coated ones for in situ trapping of selenium hydride generated in a flow injection system. Selenium was effectively trapped on zirconium treated tubes at trapping temperatures of 300–600°C, similar to those observed for palladium, whereas trapping temperatures higher than 600°C had to be used with non-treated tubes. Zirconium treated tubes used in this work showed good stability up to 300 trapping/atomization cycles, with precision better than 5%, characteristic masses of 42 (peak height) and 133 pg (peak area) of selenium were obtained. Sensitivity of zirconium and palladium treatments were similar, but zirconium offered the advantage of a single application per tube. Detection limits were 0.11 (peak height) and 0.23 ng (peak area) for a 1 ml sample volume.  相似文献   

4.
《Solid State Sciences》2007,9(9):777-784
Petroleum coke and those heat-treated at 1860 °C, 2100 °C, 2300 °C 2600 °C and 2800 °C (abbreviated as PC, PC1860, PC2100, PC2300, PC2600 and PC2800) were fluorinated by elemental fluorine of 3 × 104 Pa at 200 °C and 300 °C for 2 min. Natural graphite powder samples with average particle sizes of 5 μm, 10 μm and 15 μm (abbreviated as NG5μm, NG10μm and NG15μm) were also fluorinated by ClF3 of 3 × 104 Pa at 200 °C and 300 °C for 2 min. Transmission electron microscopic (TEM) observation revealed that closed edge of PC2800 was destroyed and opened by surface fluorination, which increased the first coulombic efficiencies of PC2300, PC2600 and PC2800 by 12.1–18.2% at 60 mA/g and by 13.3–25.8% at 150 mA/g in 1 mol/dm3 LiClO4–ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1 in volume). Light fluorination of NG10μm and NG15μm increased the first coulombic efficiencies by 22.1–28.4% at 150 mA/g in 1 mol/dm3 LiClO4–EC/DEC/PC (PC: propylene carbonate, 1:1:1 in volume).  相似文献   

5.
Spectral interferences from phosphorus on the determination of selenium in biological tissue materials were not observed when a Zeeman-effect background correction was used with rhodium as a chemical modifier. A suppression effect on the selenium signal resulted when the concentration of phosphorus present was greater than 1.0 mg ml−1. Rhodium was found to be more effective than palladium in overcoming the phosphate interference. Analytical procedures for the direct determination of trace selenium in standard reference materials by graphite furnace atomic absorption spectrometry following sample dissolution in nitric acid and hydrogen peroxide using a microwave oven has been described. The results obtained agreed favourably with the certified values.  相似文献   

6.
In this work, new experimental results for the (vapour + liquid) equilibrium (VLE) of CO2 in piperazine (PZ)-activated concentrated aqueous 2-amino-2-methyl-1-propanol (AMP) are presented for the temperature range of (303 to 328) K and PZ concentration range of (2 to 8) wt.%, keeping the total amine concentration in the solution at 40% and 50 wt.%. The partial pressures of CO2 are in the range of (0.2 to 1500) kPa. The electrolyte non-random two-liquid (ENRTL) theory has been used to develop the VLE model for the quaternary system (CO2 + AMP + PZ + H2O) to describe the equilibrium behaviour of the solution. The CO2 cyclic capacity of these solvents is determined between the rich and lean CO2 loadings. It is found that the CO2 cyclic capacity increases with the addition of PZ in aqueous AMP and also with the increase in AMP concentration in the aqueous solution. However, solid precipitation has been observed for 50 wt.% total amine concentration below T = 318 K for all relative compositions of AMP and PZ in the solvent at higher CO2 loading. The model results of equilibrium composition, pH of the loaded solution and amine volatility of the mixed solvent system, are also presented.  相似文献   

7.
The Gibbs free energy of transfer of a suitable hydrophobic probe can be regarded as a measure of the relative hydrophobicity of the different phases. The methylene group (CH2) can be considered hydrophobic, and thus be a suitable probe for hydrophobicity. In this work, the partition coefficients of a series of five dinitrophenylated-amino acids were experimentally determined, at 23 °C, in three different tie-lines of the biphasic systems: (UCON + K2HPO4), (UCON + potassium phosphate buffer, pH 7), (UCON + KH2PO4), (UCON + Na2HPO4), (UCON + sodium phosphate buffer, pH 7), and (UCON + NaH2PO4). The Gibbs free energy of transfer of CH2 units were calculated from the partition coefficients and used to compare the relative hydrophobicity of the equilibrium phases. The largest relative hydrophobicity was found for the ATPS formed by dihydrogen phosphate salts.  相似文献   

8.
《Tetrahedron: Asymmetry》2007,18(7):821-831
Ethanolamine mandelate (E.M.) crystallizes as a stable conglomerate and has been found to form partial solid solutions. The crystal structure of the pure enantiomer has been solved from single-crystal X-ray diffraction. In order to determine the extreme compositions of the partial solid solutions in equilibrium (87% ee), the isothermal ternary section in the system [(+)-E.M.–(−)-E.M.–(ethanol–water azeotropic mixture)] was established at 25 °C. Several consecutive preferential crystallization attempts (AS3PC method) were undertaken between TB = 41 °C (starting temperature) and TF = 25 °C (final temperature) on a 2-L scale.We initially expected to obtain crude crops whose enantiomeric purities would be close to that defined by the isothermal ternary phase diagram (TF). In fact, the filtered solid phases are of lower enantiomeric excesses: ca. 62% ee. The monitoring of the mother liquor composition over the course of the entrainment shows that the enantiomeric composition of the filtered solid is related to the metastable equilibria involved in the preferential crystallization.  相似文献   

9.
Electrochemical lithium intercalation within graphite from 1 mol dm 3 solution of LiClO4 in propylene carbonate (PC) was investigated at 25 and − 15 °C. Lithium ions were intercalated into and de-intercalated from graphite reversibly at − 15 °C despite the use of pure PC as the solvent. However, ceaseless solvent decomposition and intense exfoliation of graphene layers occurred at 25 °C. The results of the Raman spectroscopic analysis indicated that the interaction between PC molecules and lithium ions became weaker at − 15 °C by chemical exchange effects, which suggested that the thermodynamic stability of the solvated lithium ions was an important factor that determined the formation of a solid electrolyte interface (SEI) in PC-based solutions. Charge–discharge analysis revealed that the nature of the SEI formed at − 15 °C in 1 mol dm 3 of LiClO4 in PC was significantly different from that formed at 25 °C in 1 mol dm 3 of LiClO4 in PC containing vinylene carbonate, 3.27 mol kg 1 of LiClO4 in PC, and 1 mol dm 3 of LiClO4 in ethylene carbonate.  相似文献   

10.
A cobalt-free cubic perovskite oxide, SrFe0.9Nb0.1O3?δ (SFN) was investigated as a cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). XRD results showed that SFN cathode was chemically compatible with the electrolyte Sm0.2Ce0.8O1.9 (SDC) for temperatures up to 1050 °C. The electrical conductivity of SFN sample reached 34–70 S cm?1 in the commonly operated temperatures of IT-SOFCs (600–800 °C). The area specific resistance was 0.138 Ω cm2 for SFN cathode on SDC electrolyte at 750 °C. A maximum power density of 407 mW cm?2 was obtained at 800 °C for single-cell with 300 μm thick SDC electrolyte and SFN cathode.  相似文献   

11.
This paper emphasises the electrochemical and catalytic properties of a Ni–10% GDC (10% gadolinium-doped ceria) cermet anode of a single-chamber solid oxide fuel cell (SC-SOFC). Innovative coupling of electrochemical impedance spectroscopy with gas chromatography measurements was carried out to characterise the anode material using an operando approach. The experiments were conducted in a symmetric anode/electrolyte/anode cell prepared by slurry coating resulting in 100 μm-thick anode layers. The electrochemical performance was assessed using a two-electrode arrangement between 400 °C and 650 °C, in a methane-rich atmosphere containing CH4, O2 and H2O in a 14:2:6 volumetric ratio. The insertion of a Pt–CeO2 based catalyst with high specific surface area inside the cermet layer was found to promote hydrogen production from the Water Gas Shift reaction and consequently to improve the electrochemical performances. Indeed, a promising polarisation resistance value of 12 Ω cm2 was achieved at 600 °C with a catalytic loading of only 15 wt.%.  相似文献   

12.
Thermogravimetric Analysis of three aquatic materials, i.e. cuttlebone, mussel shell and oyster shell, and other physicochemical characteristics were investigated. The highest decomposition rates of aquatic materials under two surrounding gases, i.e. oxygen and nitrogen, exhibited no significant difference for cuttlebone (3.6×10-5-4.8×10-5 mg s-1 mginitial-1 at heating rate 5 °C/min and 11.8 ×10-5 -12.5×10-5 mg s-1 mginitial-1 at heating rate 15 °C/min) and mussel shell (3.4×10-5- 5.2×10-5 mg s-1 mginitial-1 at heating rate 5 °C/min and 11.9×10-5 – 12.4×10-5 mg s-1 mginitial-1 at heating rate 15 °C/min), while oyster shell provided the higher decomposition rate under nitrogen surrounding gas (7.6×10-4 mg s-1 mginitial-1 at heat rate 5 °C/min and 21.53×10-4 mg s-1 mginitial-1 at heating rate 15 °C/min). This is probably because of the difference in their starting crystalline structures, i.e. aragonite (cuttlebone and mussel shell) and calcite (oyster shell). The cubic calcium oxides were prepared by calcination of three aquatic materials under oxygen and nitrogen surrounding gases at 5 °C/min ramping to 850 °C for 2 hours. All resulting calcium oxides obtained from oxygen atmosphere provided only cubic crystalline phases and the adsorption-desorption isotherms (IUPAC Type III), whereas the calcinations under nitrogen surrounding gas gave a presence of calcium hydroxide crystalline or hydroxyl- contaminate existing with cubic calcium oxide that influences on the strength and the number of carbon dioxide adsorption sites. The specific surface area of all resulting calcium oxides ranged from 0.1 – 1.5 m2/g and the average pore diameter was found in the range of 40-60 nm. The the number of basic sites belonging to CaO derived from Oyster shell or Cuttlebone were improved while firing under oxygen atmosphere. The suitable firing condition is at the low heating rate to develop porous materials.  相似文献   

13.
This work presents new experimental results for carbon dioxide (CO2) solubility in aqueous 2-amino-2-methyl-1-propanol (AMP) over the temperature range of (298 to 328) K and CO2 partial pressure of about (0.4 to 1500) kPa. The concentrations of the aqueous AMP lie within the range of (2.2 to 4.9) mol · dm?3. A thermodynamic model based on electrolyte non-random two-liquid (eNRTL) theory has been developed to correlate and predict the (vapour + liquid) equilibrium (VLE) of CO2 in aqueous AMP. The model predictions have been in good agreement with the experimental data of CO2 solubility in aqueous blends of this work as well as those reported in the literature. The current model can also predict speciation, heat of absorption, enthalpy of CO2 loaded aqueous AMP, pH of the loaded solution, and AMP volatility.  相似文献   

14.
The title compound MIL-131 (MIL stands for Material from Institut Lavoisier) was prepared hydrothermally (4 days, 473 K, autogenous pressure) in the presence of an organic base (N((CH2)2NH2)3). The structure of MIL-131 or TiIIITiIV(OH)F4(HPO4)·(PO4)·(N((CH2)2NH3)3) has been determined ab initio from X-Ray synchrotron powder diffraction data using simulated annealing methods and was refined in the triclinic space group P-1 (no. 2). MIL-131 exhibits a one-dimensional structure built up from inorganic chains of corner sharing TiO5(OH) titanium(III) octahedra and PO4 and HPO4 phosphate tetrahedra, related to TiO2F4 titanium octahedra. Protonated triamine cations are located between the inorganic motifs, and interact strongly with the mineral network through hydrogen bondings both with terminal fluorine atoms and hydroxo or oxo groups. Multinuclear solid state NMR has allowed a clear attribution of the protons, fluoride, and phosphate groups environment within the framework of MIL-131. The large values of chemical shift anisotropy together with the absence of any 13C NMR response confirmed the presence of paramagnetic titanium(III) species deduced from the crystal structure. Finally, 2D MAS 1H-31P CP-HETCOR NMR correlation experiment gives some insight on the nature of the intra-framework hydrogen bonding.Crystal data for MIL-131: a = 14.109(1) Å, b = 8.462(3) Å, c = 7.179(1) Å, α = 93.772(1)°, β = 96.566(2)°, γ = 98.004(1)°, V = 840.36(2) Å3, z = 2.  相似文献   

15.
The chemical potentials of CaO in two-phase fields (TiO2 + CaTiO3), (CaTiO3 + Ca4Ti3O10), and (Ca4Ti3O10 + Ca3Ti2O7) of the pseudo-binary system (CaO + TiO2) have been measured in the temperature range (900 to 1250) K, relative to pure CaO as the reference state, using solid-state galvanic cells incorporating single crystal CaF2 as the solid electrolyte. The cells were operated under pure oxygen at ambient pressure. The standard Gibbs free energies of formation of calcium titanates, CaTiO3, Ca4Ti3O10, and Ca3Ti2O7, from their component binary oxides were derived from the reversible e.m.f.s. The results can be summarised by the following equations: CaO(solid) + TiO2(solid)  CaTiO3(solid), ΔG° ± 85/(J · mol?1) = ?80,140 ? 6.302(T/K); 4CaO(solid) + 3TiO2(solid)  Ca4Ti3O10(solid), ΔG° ± 275/(J · mol?1) = ?243,473 ? 25.758(T/K); 3CaO(solid) + 2TiO2(solid)  Ca3Ti2O7(solid), ΔG° ± 185/(J · mol?1) = ?164,217 ? 16.838(T/K).The reference state for solid TiO2 is the rutile form. The results of this study are in good agreement with thermodynamic data for CaTiO3 reported in the literature. For Ca4Ti3O10 Gibbs free energy of formation obtained in this study differs significantly from that reported by Taylor and Schmalzried at T = 873 K. For Ca3Ti2O7 experimental measurements are not available in the literature for direct comparison with the results obtained in this study. Nevertheless, the standard entropy for Ca3Ti2O7 at T = 298.15 K estimated from the results of this study using the Neumann–Koop rule is in fair agreement with the value obtained from low-temperature heat capacity measurements.  相似文献   

16.
The partitioning behavior of l-methionine has been studied in aqueous two-phase systems of (poly(propylene glycol) + sodium phosphate salts + H2O) at different temperatures. The salts used were sodium di-hydrogen phosphate (NaH2PO4), di-sodium hydrogen phosphate (Na2HPO4) and tri-sodium phosphate (Na3PO4). The effects of tie line length, salt type, and temperature on the partition coefficient of this amino acid have been studied. In addition, thermodynamic parameters (ΔH°, ΔS° and ΔG°) as a function of temperature were calculated. The results showed that increasing tie line length led to decreasing of the partition coefficient. We also showed that the partition coefficients of the amino acid in the systems containing Na3PO4 are greater than the other two salts. Moreover, it is verified that increasing temperature led to decreasing the partition coefficient. The experimental partition coefficient data are correlated using a modified virial-type model.  相似文献   

17.
《Comptes Rendus Chimie》2014,17(5):454-458
The steam reforming of methane over Cu/Co6Al2 mixed oxides with different copper contents was studied. The Co6Al2 support was prepared via the hydrotalcite route. It was thermally stabilized at 500 °C, impregnated with 5 wt.%, 15 wt.% or 25 wt.% copper using copper (II) nitrate Cu(NO3)2·3H2O precursor and then calcined again at 500 °C under an air flow. The impregnation of copper enhanced significantly the reactivity of the solids in the considered reaction. The 5Cu/Co6Al2 solid was the most reactive one, with a methane conversion of 96% at 650 °C. The selectivities of H2 and CO2 were also better for the catalyst containing 5 wt.% copper compared to higher copper loadings. The decrease in the catalytic reactivity with increasing the copper content was attributed to the formation of agglomerated and less reactive CuO species, which were detected by XRD and TPR analyses.  相似文献   

18.
Selenium is essential for many aspects of human health and, thus, the object of intensive medical research. This demands the use of analytical techniques capable of analysing selenium at low concentrations with high accuracy in widespread matrices and sometimes smallest sample amounts.In connection with the increasing importance of selenium, there is a need for rapid and simple on-site (or near-to-site) selenium analysis in food basics like wheat at processing and production sites, as well as for the analysis of this element in dietary supplements. Common analytical techniques like electrothermal atomic absorption spectroscopy (ETAAS) and inductively-coupled plasma mass spectrometry (ICP-MS) are capable of analysing selenium in medical samples with detection limits in the range from 0.02 to 0.7 μg/l. Since in many cases less complicated and expensive analytical techniques are required, TXRF has been tested regarding its suitability for selenium analysis in different medical, food basics and dietary supplement samples applying most simple sample preparation techniques.The reported results indicate that the accurate analysis of selenium in all sample types is possible. The detection limits of TXRF are in the range from 7 to 12 μg/l for medical samples and 0.1 to 0.2 mg/kg for food basics and dietary supplements. Although this sensitivity is low compared to established techniques, it is sufficient for the physiological concentrations of selenium in the investigated samples.  相似文献   

19.
Strontium phosphate apatites with compositions Sr5(PO4)3Zn0.15O0.3(OH)0.7, Sr5(PO4)3Ni0.2O0.4(OH)0.6, and Sr5(PO4)3Co0.2O0.5(OH)0.4 were synthesized by solid state reaction at 1400 °C in air. The samples were characterized by powder X-ray diffraction, EDX analysis, magnetic measurements and IR spectroscopy. The crystal structures were refined by the Rietveld method in the space group P63/m with lattice constants a = 9.7499(1), 9.7722(1), 9.7507(1) Å and c = 7.3066(1), 7.2962(1), 7.2988(1) Å, respectively. The 3d-metal atoms were found randomly distributed in the hexagonal channels formally substituting hydrogen in the initial hydroxyapatite. Zn and Ni atoms were twofold coordinated by oxygen atoms such that the linear O–M–O groups formed in the channel separated by the OH groups. Co atom was shifted from the channel center giving the O–Co–O fragment distorted from a linear geometry probably due to the additional coordination by the oxygen atoms of the phosphate groups.  相似文献   

20.
The three-phase (vapour + liquid + solid) equilibrium conditions for semi-clathrates formed from three mixtures of (CO2 + N2), in aqueous solutions of tetra-butyl ammonium bromide (TBAB), were measured in an isochoric reactor. The experiments were conducted at temperatures between (281 and 290) K, at pressures between (1.9 and 5.9) MPa and in aqueous TBAB solutions of wTBAB = (0.05, 0.10, and 0.20). The experimental results obtained in this study were compared with previously obtained results for gas hydrates, formed from the same three mixtures of (CO2 + N2) and it was observed that semi-clathrates formed at a substantially lower pressure than did gas hydrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号