首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop a model for constructing quadratic objective functions in n target variables. At the input, a decision maker is asked a few simple questions about his ordinal preferences (comparing two-dimensional alternatives in terms `better', `worse', `indifferent'). At the output, the model mathematically derives a quadratic objective function used to evaluate n-dimensional alternatives.Thus the model deals with some imaginary decisions (criteria aggregates) at the input, and disaggregates the decision maker's preference into partial criteria and their cross-correlations (=a quadratic objective function). Therefore, the model provides an approximation step which is next to the disaggregation of a preference into additively separable linear criteria with weight coefficients.The model is based on least squares fitting a quadratic indifference hypersurface (if n=2, indifference curve) to several alternatives which are supposed to be equivalent in preference. The resulting ordinal preference is independent of the cardinal utility scale used in intermediate computations which implies that the model is ordinal. The monotonicity of the quadratic objective function is implemented by means of a finite number of linear constraints, so that the computational model is reduced to restricted least squares.In illustration, we construct a quadratic objective function of German economic policy in four target variables: inflation, unemployment, GNP growth, and increase in public debt. This objective function is used to evaluate the German economic development in 1980–1994.In another application, we construct a quadratic objective function of ski station customers. Then it is used to adjust prices of 10 ski stations to the South of Stuttgart.In Appendix A we provide an original fast algorithm for restricted least squares and quadratic programming used in the main model.  相似文献   

2.
Within the multicriteria aggregation–disaggregation framework, ordinal regression aims at inducing the parameters of a decision model, for example those of a utility function, which have to represent some holistic preference comparisons of a Decision Maker (DM). Usually, among the many utility functions representing the DM’s preference information, only one utility function is selected. Since such a choice is arbitrary to some extent, recently robust ordinal regression has been proposed with the purpose of taking into account all the sets of parameters compatible with the DM’s preference information. Until now, robust ordinal regression has been implemented to additive utility functions under the assumption of criteria independence. In this paper we propose a non-additive robust ordinal regression on a set of alternatives A, whose utility is evaluated in terms of the Choquet integral which permits to represent the interaction among criteria, modelled by the fuzzy measures, parameterizing our approach.  相似文献   

3.
This paper considers the effects of some frequently used utility functions in portfolio selection by comparing the optimal investment outcomes corresponding to these utility functions. Assets are assumed to form a complete market of the Black–Scholes type. Under consideration are four frequently used utility functions: the power, logarithm, exponential and quadratic utility functions. To make objective comparisons, the optimal terminal wealths are derived by integration representation. The optimal strategies which yield optimal values are obtained by the integration representation of a Brownian martingale. The explicit strategy for the quadratic utility function is new. The strategies for other utility functions such as the power and the logarithm utility functions obtained this way coincide with known results obtained from Merton’s dynamic programming approach.  相似文献   

4.
Objective functions that are applied in ordinal data analysis must be adequate, i.e. carefully adapted to the structure of the observed data. In addition, any analysis of data that is based upon objective functions must lead to interpretable results. After a general characterization of adequate objective functions in ordinal data analysis, therefore, the particular problems of constructing adequate and interpretable dissimilarity coefficients and correlation coefficients in ordinal data analysis, stress measures (stress functions) in non-metric scaling and generalized stress measures or correlation coefficients in any theory of rank estimation will be discussed.  相似文献   

5.
The traveling car renter problem (CaRS) is an extension of the classical traveling salesman problem (TSP) where different cars are available for use during the salesman’s tour. In this study we present three integer programming formulations for CaRS, of which two have quadratic objective functions and the other has quadratic constraints. The first model with a quadratic objective function is grounded on the TSP interpreted as a special case of the quadratic assignment problem in which the assignment variables refer to visitation orders. The second model with a quadratic objective function is based on the Gavish and Grave’s formulation for the TSP. The model with quadratic constraints is based on the Dantzig–Fulkerson–Johnson’s formulation for the TSP. The formulations are linearized and implemented in two solvers. An experiment with 50 instances is reported.  相似文献   

6.
We consider a problem of finding optimal contracts in continuous time, when the agent’s actions are unobservable by the principal, who pays the agent with a one-time payoff at the end of the contract. We fully solve the case of quadratic cost and separable utility, for general utility functions. The optimal contract is, in general, a nonlinear function of the final outcome only, while in the previously solved cases, for exponential and linear utility functions, the optimal contract is linear in the final output value. In a specific example we compute, the first-best principal’s utility is infinite, while it becomes finite with hidden action, which is increasing in value of the output. In the second part of the paper we formulate a general mathematical theory for the problem. We apply the stochastic maximum principle to give necessary conditions for optimal contracts. Sufficient conditions are hard to establish, but we suggest a way to check sufficiency using non-convex optimization.  相似文献   

7.
In this paper we show how externalities between links affect the existence and uniqueness of pairwise stable (PS) networks. For this we introduce the properties ordinal convexity (concavity) and ordinal strategic complements (substitutes) of utility functions on networks. It is shown that there exists at least one PS network if the profile of utility functions is ordinal convex and satisfies the ordinal strategic complements property. On the other hand, ordinal concavity and ordinal strategic substitutes are sufficient for some uniqueness properties of PS networks. Additionally, we elaborate on the relation of the link externality properties to definitions in the literature.  相似文献   

8.
We consider some algorithms for unconstrained minimization without derivatives that form linear or quadratic models by interpolation to values of the objective function. Then a new vector of variables is calculated by minimizing the current model within a trust region. Techniques are described for adjusting the trust region radius, and for choosing positions of the interpolation points that maintain not only nonsingularity of the interpolation equations but also the adequacy of the model. Particular attention is given to quadratic models with diagonal second derivative matrices, because numerical experiments show that they are often more efficient than full quadratic models for general objective functions. Finally, some recent research on the updating of full quadratic models is described briefly, using fewer interpolation equations than before. The resultant freedom is taken up by minimizing the Frobenius norm of the change to the second derivative matrix of the model. A preliminary version of this method provides some very promising numerical results. Presented at NTOC 2001, Kyoto, Japan.  相似文献   

9.
Rational approximation of vertical segments   总被引:1,自引:0,他引:1  
In many applications, observations are prone to imprecise measurements. When constructing a model based on such data, an approximation rather than an interpolation approach is needed. Very often a least squares approximation is used. Here we follow a different approach. A natural way for dealing with uncertainty in the data is by means of an uncertainty interval. We assume that the uncertainty in the independent variables is negligible and that for each observation an uncertainty interval can be given which contains the (unknown) exact value. To approximate such data we look for functions which intersect all uncertainty intervals. In the past this problem has been studied for polynomials, or more generally for functions which are linear in the unknown coefficients. Here we study the problem for a particular class of functions which are nonlinear in the unknown coefficients, namely rational functions. We show how to reduce the problem to a quadratic programming problem with a strictly convex objective function, yielding a unique rational function which intersects all uncertainty intervals and satisfies some additional properties. Compared to rational least squares approximation which reduces to a nonlinear optimization problem where the objective function may have many local minima, this makes the new approach attractive.  相似文献   

10.
We consider a risk-averse firm bearing the revenue risk and fuzzy production cost. Using the quadratic utility function the sufficient conditions for a deductible insurance to increase the output are derived and found to be the functions of insurance premium and deductible. We also show that the optimal production for a firm in the fuzzy environment is less than that in the crisp environment.  相似文献   

11.
The purpose of the method presented in this paper is to assess additive utility functions which aggregate multiple criteria in a composite criterion, using the information given by a subjective ranking on a set of stimuli or actions (weak-order comparison judgments) and the multicriteria evaluations of these actions. It is an ordinal regression method using linear programming to estimate the parameters of the utility function.Stability and sensitivity analysis leads to the assessment of a set of utility functions by means of post-optimality analysis techniques in linear programming.Finally, a simple illustrative example is presented and some extensions of the method are proposed.  相似文献   

12.
This paper describes a parametric family of utility functions for decision analysis. The parameterization embeds the HARA class in a four-parameter representation for the risk aversion function. The resulting utility functions can have only four shapes: concave, convex, S-shaped, and reverse S-shaped. This makes the family suited for both expected utility and prospect theory. The paper also describes an alternative technique to estimate the four parameters from elicited utilities, which is simpler than standard fitting by minimization of the mean quadratic error.  相似文献   

13.
In this paper we consider optimization problems defined by a quadratic objective function and a finite number of quadratic inequality constraints. Given that the objective function is bounded over the feasible set, we present a comprehensive study of the conditions under which the optimal solution set is nonempty, thus extending the so-called Frank-Wolfe theorem. In particular, we first prove a general continuity result for the solution set defined by a system of convex quadratic inequalities. This result implies immediately that the optimal solution set of the aforementioned problem is nonempty when all the quadratic functions involved are convex. In the absence of the convexity of the objective function, we give examples showing that the optimal solution set may be empty either when there are two or more convex quadratic constraints, or when the Hessian of the objective function has two or more negative eigenvalues. In the case when there exists only one convex quadratic inequality constraint (together with other linear constraints), or when the constraint functions are all convex quadratic and the objective function is quasi-convex (thus allowing one negative eigenvalue in its Hessian matrix), we prove that the optimal solution set is nonempty.  相似文献   

14.

We study convex relaxations of nonconvex quadratic programs. We identify a family of so-called feasibility preserving convex relaxations, which includes the well-known copositive and doubly nonnegative relaxations, with the property that the convex relaxation is feasible if and only if the nonconvex quadratic program is feasible. We observe that each convex relaxation in this family implicitly induces a convex underestimator of the objective function on the feasible region of the quadratic program. This alternative perspective on convex relaxations enables us to establish several useful properties of the corresponding convex underestimators. In particular, if the recession cone of the feasible region of the quadratic program does not contain any directions of negative curvature, we show that the convex underestimator arising from the copositive relaxation is precisely the convex envelope of the objective function of the quadratic program, strengthening Burer’s well-known result on the exactness of the copositive relaxation in the case of nonconvex quadratic programs. We also present an algorithmic recipe for constructing instances of quadratic programs with a finite optimal value but an unbounded relaxation for a rather large family of convex relaxations including the doubly nonnegative relaxation.

  相似文献   

15.
This paper considers a class of quadratic programs where the constraints ae linear and the objective is a product of two linear functions. Assuming the two linear factors to be non-negative, maximization and minimization cases are considered. Each case is analyzed with the help of a bicriteria linear program obtained by replacing the quadratic objective with the two linear functions. Global minimum (maximum) is attained at an efficient extreme point (efficient point) of the feasible set in the solution space and corresponds to an efficient extreme point (efficient point) of the feasible set in the bicriteria space. Utilizing this fact and certain other properties, two finite algorithms, including validations are given for solving the respective problems. Each of these, essentially, consists of solving a sequence of linear programs. Finally, a method is provided for relaxing the non-negativity assumption on the two linear factors of the objective function.  相似文献   

16.
A tensor given by its canonical decomposition is approximated by another tensor (again, in the canonical decomposition) of fixed lower rank. For this problem, the structure of the Hessian matrix of the objective function is analyzed. It is shown that all the auxiliary matrices needed for constructing the quadratic model can be calculated so that the computational effort is a quadratic function of the tensor dimensionality (rather than a cubic function as in earlier publications). An economical version of the trust region Newton method is proposed in which the structure of the Hessian matrix is efficiently used for multiplying this matrix by vectors and for scaling the trust region. At each step, the subproblem of minimizing the quadratic model in the trust region is solved using the preconditioned conjugate gradient method, which is terminated if a negative curvature direction is detected for the Hessian matrix.  相似文献   

17.
Mathematical formulation of an optimization problem often depends on data which can be measured in more than one acceptable way. If the conclusion of optimality depends on the choice of measure, then we should question whether it is meaningful to ask for an optimal solution. If a meaningful optimal solution exists and the objective function depends on data measured on an ordinal scale of measurement, then the greedy algorithm will give such a solution for a wide range of objective functions.  相似文献   

18.
Two classes of continuous systems described by differential equations in which coefficients are functions of the state vector are considered. The systems are subject to two scalar controls and a constantly acting scalar perturbation.An analytical synthesis of a control is performed under which the system is invariant in the sense that the scalar output of the system approaches zero as time tends to infinity and does not depend on the perturbation; moreover, the limit norm of the state vector is bounded above by the least upper bound for the norm of perturbation. The case where the coefficients of the system are subject to an uncontrolled additive perturbation is considered. In this case, the limit of the output norm is bounded above by a known function of the perturbation value. The method of synthesis is based on constructing the Lyapunov function as a positive definite quadratic form with Jacobian matrix.  相似文献   

19.
We consider several multiperiod portfolio optimization models where the market consists of a riskless asset and several risky assets. The returns in any period are random with a mean vector and a covariance matrix that depend on the prevailing economic conditions in the market during that period. An important feature of our model is that the stochastic evolution of the market is described by a Markov chain with perfectly observable states. Various models involving the safety-first approach, coefficient of variation and quadratic utility functions are considered where the objective functions depend only on the mean and the variance of the final wealth. An auxiliary problem that generates the same efficient frontier as our formulations is solved using dynamic programming to identify optimal portfolio management policies for each problem. Illustrative cases are presented to demonstrate the solution procedure with an interpretation of the optimal policies.  相似文献   

20.
Analytical expressions for optimal harvest of a renewable resource stock which is subject to a stochastic process are found. These expressions give the optimal harvest as an explicit feedback control law. All relations in the model, including the stochastic process, may be arbitrary functions of the state variable (stock). The objective function, however, is at most a quadratic function in the control variable (yield). A quadratic objective function includes the cases of downward sloping demand and increasing marginal costs which are the most common sources for nonlinearities in the economic part of the model. When it is assumed that there is a moratorium on harvest for stock sizes below a certain level (biological barrier), it is shown that the barrier requirements influence the optimal harvest paths throughout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号