首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural, electrical and magnetic measurements of polycrystalline CuCrxVySe4 spinels with x=1.79, 1.64 and 1.49 and y=0.08, 0.22 and 0.45, respectively, are presented. The compounds under study crystallize in regular system of a normal spinel type MgAl2O4 structure with the space group symmetry Fd3m. The chromium spins are coupled ferromagnetically and show both strong long- and short-range magnetic interactions evidenced by the large values of the Curie (TC) and Curie–Weiss (θCW) temperatures, decreasing from TC=407 K and θCW=415 K for y=0.08, via TC=349 K and θCW=367 K for y=0.22 to TC=283 K and θCW=293 K for y=0.45, respectively. In all the studied spinels a change of the electrical conductivity character from the semiconductive into the metallic one above 230 K was observed. A detailed thermoelectric power analysis showed a domination of diffusion thermopower component, maximum of phonon drag component at 230 K, a decrease of impurity component with increasing V content, as well as the weak magnon excitations at 40 K.  相似文献   

2.
A series of samples of Co1−xCdxFe2O4 (x=0, 0.1, 0.3, 0.5, 0.7and 0.9) were prepared by the usual ceramic technique and sintered at 1473 K for 6 h. The X-ray analysis shows the existence of single phase spinel structure with the increase of lattice parameter and density with increasing Cd contents whereas the porosity decreases. The DC electrical conductivity increases with increasing temperature. It is also increased by increasing Cd content and reaches maximum at x=0.7 at which the activation energy for conduction becomes minimum. The transition temperature Tc shifts to a higher value as Cd content increases. The thermoelectric power α is converted from a positive value for Co ferrite (hole) to a negative value for the mixed ferrite Co1−xCdxFe2O4. The activation energy for mobility Eμ is nearly equal to Eσ and the thermoelectric power α is nearly constant with the variation of temperature which make together a strong reason for the presence of hopping condition mechanism.  相似文献   

3.
We report the transport studies of YBa2Cu3Oy/YxPr1−xBa2Cu3Oy and YBa2Cu3Oy/R1−xMxMnO3 superlattices in magnetic fields in which R=La or Nd, and M=Ca or Sr. The X-ray diffraction of samples shows superlattice structure. The resistive transition in a magnetic field shows thermal activated behavior. The flux pinning is reduced when the coupling strength between YBCO layers is decreased. The angular dependence of the critical current of YBa2Cu3Oy/PrBa2Cu3Oy superlattices reveals the dimensionality of superlattices. The magnetoresistance ratio (MR), |Δρ(H=7 T)−Δρ(H=0)|/Δρ(H=7 T), of YBa2Cu3Oy/R1−xMxMnO3 superlattices is affected by the layer coupling of R1−xMxMnO3 layers. The enhancement of the MR ratio in the tri-layer YBa2Cu3Oy/La0.7M0.3MnO3/YBa2Cu3Oy film in the low temperature regime is significant and has a value of 33650% at T=75 K. We attribute this enhancement of the MR to the ordering of magnetic moment in ferromagnetic layers in magnetic fields. The results are discussed in terms of existing theories.  相似文献   

4.
YFexAl12−x in the composition range 4.4⩽x⩽5 was prepared by induction melting followed by annealing in vacuum at 1270 K. Magnetization data below 150 K show complex magnetic behaviour dependent on applied field, composition and temperature. The transition temperature Tc, corresponding to the main maximum of the magnetization vs. temperature curves and below which magnetic interactions are observed for a significant fraction of the Fe atoms in the Mössbauer spectra, decreases from 180 K for x=4 down to 100 K for 4.2⩽x⩽4.7 and rises again up to 160 K for x=5. The analysis of the spectra obtained at 5 K is consistent with full occupation of the 8f sites by Fe atoms and sharing of the 8j sites by Fe and Al as deduced from the Rietveld analysis of X-ray powder diffraction data. The Mössbauer spectra further show a dependence of magnetic hyperfine fields and isomer shifts on the crystallographic site and on the number of the Fe nearest neighbours similar to that observed in UFexAl12−x (4⩽x⩽6) and RFexAl12−x (R=Y, Lu, x=4, 4.2). The magnetic properties of the UFexAl12−x and YFexAl12−x series are compared and the magnetic interactions between the different Fe sublattices are discussed.  相似文献   

5.
A study of magnetic and thermal properties has been carried out on the alloys from the Gd4(BixSb1−x)3 series with x=0, 0.25, 0.5, 0.75, and 1. All of the alloys are ferromagnetic below their respective Curie temperatures which vary from 266 K for x=0 to 332 K for x=1.0. The magnetocaloric effect calculated from the temperature and magnetic field dependencies of the magnetization and heat capacity is moderate when compared to that of other materials, which order in the same temperature range. Both the magnetic ordering and the magnetocaloric effect peak temperatures increase nearly linearly with the increasing Bi content. Experimental magnetocaloric effect data obtained from two different measurement techniques are in excellent agreement.  相似文献   

6.
The effect of Mo and Fe atoms on the crystal structure and magnetic properties of the intermetallic La2Co17−xMox (x=0.5, 1, 1.5, 2), and La2Co16−yFeyMo (y=0, 1, 2, 3, 4, 6) compounds have been studied by X-ray diffractometry, magnetic measurements and Mössbauer spectroscopy. All samples belong to the rhombohedral Th2Zn17-type structure and their lattice parameters a and c increase both with Mo and Fe content. From the La–Co–Mo samples only the one with x=0.5 presents planar anisotropy, whereas from the La–Co–Fe–Mo samples only the y=1 has uniaxial anisotropy. The magnetization MS and the Curie temperature TC decrease upon Mo substitution, whereas the anisotropy field HA does not change significantly. In the Fe-substituted compounds MS increases, but the Curie temperature increases slightly for 0⩽y⩽4 but decreases in y=6. The low temperature M–T curve shows that the samples La2Co16.5Mo0.5, and La2Co10Fe6Mo present a spin reorientation transitions at 70 and 260 K, respectively. Mössbauer samples were obtained for all Fe-containing samples in the temperature range 20–300 K. Above 260 K a jump in the values of the hyperfine fields and quadrupole splitting parameters is observed which can be associated to the spin reorientation.  相似文献   

7.
《Solid State Ionics》2006,177(9-10):863-868
Layered Li(Ni0.5Co0.5)1−yFeyO2 cathodes with 0  y  0.2 have been synthesized by firing the coprecipitated hydroxides of the transition metals and lithium hydroxide at 700 °C and characterized as cathode materials for lithium ion batteries to various cutoff charge voltages (up to 4.5 V). While the y = 0.05 sample shows an improvement in capacity, cyclability, and rate capability, those with y = 0.1 and 0.2 exhibit a decline in electrochemical performance compared to the y = 0 sample. Structural characterization of the chemically delithiated Li1−x(Ni0.5Co0.5)1−yFeyO2 samples indicates that the initial O3 structure is maintained down to a lithium content (1  x)  0.3. For (1  x) < 0.3, while a P3 type phase is formed for the y = 0 sample, an O1 type phase is formed for the y = 0.05, 0.1 and 0.2 samples. Monitoring the average oxidation state of the transition metal ions with lithium contents (1  x) reveals that the system is chemically more stable down to a lower lithium content (1  x)  0.3 compared to the Li1−xCoO2 system. The improved structural and chemical stabilities appear to lead to better cyclability to higher cutoff charge voltages compared to that found before with the LiCoO2 system.  相似文献   

8.
《Solid State Ionics》2006,177(35-36):3199-3203
A co-dopant strategy is used to investigate the effect that the elastic strain in the lattice has on the grain ionic conductivity of doped ceria electrolytes. Based on critical dopant ionic radius (rc), different compositions in the LuxNdyCe1−xyO2−δ (x + y = 0.05, 0.10, 0.15, and 0.20) system are studied. Dopants are added such that the weighted average dopant ionic radius matches rc for all the compositions. Dense ceramic discs are prepared using conventional solid oxide route and sintering methods. Precise lattice parameter measurements are used to calculate the lattice strain. The ionic conductivity of the samples is measured in the temperature range of 250 °C to 700 °C using two-probe electrochemical impedance spectroscopy technique. The elastic strain present in LuxNdyCe1−xyO2−δ system is found to be negligible when compared to LuxCe1−xO2−δ (negative) and NdxCe1−xO2−δ (positive) systems. Grain ionic conductivity of LuxNdyCe1−xyO2−δ (where x + y = 0.05) at 500 °C is observed to be 1.9 × 10 3 S/cm which is twice as high as that of Lu0.05Ce0.95O2−δ. These results extend the validity of the rc concept as a strategy for co-doping ceria electrolytes and open new designing avenues for solid oxide electrolytes with enhanced ionic conductivity.  相似文献   

9.
We studied the structure and magnetic properties of co-sputtered Co1−xCx thin films using a transmission electron microscope (TEM) and a SQUID magnetometer. These properties were found to depend critically on deposition temperature, TS, and composition, x. Generally, phase separation into metallic Co and graphite-like carbon phases proceeds with increasing TS and decreasing x. Plan view and cross-sectional TEM images of the films prepared showed that Co grains about 10–20 nm in diameter and 30–50 nm in height are three-dimensionally separated by graphite-like carbon layers 1–2 nm thick. Optimum magnetic properties with saturation magnetization of 380 emu/cc and coercivity of 400 Oe were obtained for a film with x=0.5 and TS=350°C.  相似文献   

10.
《Current Applied Physics》2010,10(2):422-427
New lead-free (Bi1−xyNdxNa1−y)0.5BayTiO3 ceramics were prepared by a conventional ceramic technique and their dielectric and piezoelectric properties were studied. X-ray diffraction studies reveal that Nd3+ and Ba2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure, and a morphotropic phase boundary (MPB) of rhombohedral and tetragonal phases is formed at 0.04 < y < 0.10. The partial substitutions of Nd3+ and Ba2+ decrease effectively the coercive field Ec and increase significantly the remanent polarization Pr. Because of lower Ec, larger Pr and the formation of the MPB, the piezoelectric properties of the ceramics are significantly enhanced at x/y = 0.02/0.06: d33 = 150 pC/N and kp = 30.5%. The ceramics exhibit relaxor characteristic, which is probably resulted from the cation disordering in the 12-fold coordination sites. The depolarization temperature Td shows a strong compositional dependence and reaches a minimum value at the MPB. The temperature dependences of the ferroelectric and dielectric properties suggest that the ceramics may contain both the polar and non-polar regions near the depolarization temperature Td, which cause the polarization hysteresis loop become deformed near/above Td.  相似文献   

11.
The influence of a Ni deficit in the nickel sublattice on the electronic and magnetic properties of PrNi2−xSb2 compound is investigated. The band structure is calculated using the LMTO method for x=0, 0.50, 1.0 and 1.5. At T=0 K the compound is antiferromagnetic with a magnetic moment on Pr close to 2.0 μB.  相似文献   

12.
《Solid State Ionics》2006,177(19-25):1807-1810
The crystal chemistry and mixed conductor properties of the n = 2 member of the Ruddlesden–Popper (R–P) phases Sr3−xLaxFe2−yNiyO7−δ with 0  x  0.3 and 0  y  1.0 have been studied at high temperature. High-temperature X-ray diffraction and thermogravimetric measurements of the equilibrium pO2 (10 5  pO2  1 atm) in the temperature range 400  T  1000 °C indicate that the Sr3FeNiO7−δ phase is able to accommodate a large oxygen non-stoichiometry (δ  1.5) without structural transformations. The electrical conductivity and oxygen permeability increase with the substitution of Ni for Fe in the range 550  T  1000 °C. The electrical transport of the Sr3FeNiO7−δ phase is thermally activated and the activation energy decreases with the substitution of Ni for Fe for a given oxygen content. The increase in the oxygen permeation flux with increasing Ni content is due to an increasing oxygen non-stoichiometry and a lower activation energy for permeation.  相似文献   

13.
AC and DC bulk magnetic measurements were performed for RNi1−xIn1+x (R=Gd–Er and x=0,0.1, 0.25) compounds. These compounds crystallize in the hexagonal ZrNiAl-type structure. The lattice parameters a and c for the RNiIn series decrease linearly with increasing number of 4f electrons. For nonstoichiometric RNi1−xIn1+x additional indium atoms occupy the 2(c) crystallographic site and the a parameter increases while the c parameter decreases with increasing indium content. The stoichiometric samples show ferromagnetic behavior with the critical temperature changing from 96 K for R=Gd to 9 K for R=Er. In the nonstoichiometric RNi1−xIn1+x compounds increase in the indium content leads to decrease in the ferromagnetic critical temperatures and to a change of the antiferromagnetic ordering for x=0.25 in the case of R=Dy, Ho and Er.  相似文献   

14.
The effect of oxygen isotopic substitution on the superconducting transition temperature has been studied for heavily underdoped and overdoped La2?xSrxCu1?yZnyO4 compounds with different Zn contents in the CuO2 plane. The effect of Zn on the isotope coefficient, α, was significantly more pronounced in the case of the underdoped (x = 0.09) compounds compared to the overdoped (x = 0.22) ones. The variation of α with disorder content can be described quite well within a model based solely on Cooper pair-breaking in the case of the underdoped compounds. This model fails to describe the behavior of α(y) for the overdoped samples, even though Zn still suppresses Tc very effectively at this hole (Sr) content, indicating that the Zn induced pair-breaking is still very much at play. We discuss the implications of these findings in details by considering the Zn induced magnetism, stripe correlations, and possible changes in the superconducting order parameter as hole content in the CuO2 plane, p (≡x), is varied.  相似文献   

15.
Spin reorientation and magnetocrytalline anisotropy of (Nd1−xDyx)2Fe14B (x=0.25, 0.5, 0.75) have been studied from mangetization curves of magnetically aligned powders. In (Nd1−xDyx)2Fe14B, the spin reorientation temperature (TSR) decreases linearly on increasing Dy-substitution from 135 to 56 K with the ratio of ΔTSR=−1.11 K/Dy at% in the composition range of 0⩽x⩽0.75. The spin reorientation angle at 4.2 K decreases on Dy-substitution from 30.4° at x=0 to 14.7° at x=0.75. From the investigation of the magnetocrystalline anisotropy at 4.2 K, the disappearance of the spin reorientation for compositions x≳0.85 is expected.  相似文献   

16.
The magnetic properties of Tb(Fe1−xCox)11.3Nb0.7 compounds with x=0, 0.05, 0.1, 0.15, 0.2 and 0.3 have been investigated. All compounds studied crystallize in the ThMn12-type of structure. Substitution of Co for Fe leads to a contraction of the unit-cell volume. The Curie temperature clearly increases with increasing Co content from 551 K for x=0 to 831 K for x=0.3. The magnetic moment of the transition-metal sublattice increases with increasing Co content from 22.2 μB/f.u. for x=0 to 23.1 μB/f.u. for x=0.3. As the temperature increases, a spin reorientation from easy-plane to easy-cone is found in all compounds investigated. The spin-reorientation temperatures Tsr have been derived from the temperature dependence of the magnetization in a low field and decrease monotonously with increasing Co content. The easy magnetization direction at room temperature has been determined by X-ray diffraction on magnetically-aligned powder samples. The influence of the substitution of Co for Fe on the magnetic anisotropy is discussed in terms of crystal-field theory.  相似文献   

17.
We study the structural, superconducting and magnetic properties of the Y1−xPrxBaSrCu3O7 system with x=0.0, 0.20, 0.25, 0.30, 0.40, 0.50, 0.60, 0.75 and 1.0, from X-ray diffraction, AC and DC magnetic susceptibility measurements. X-ray diffraction results reveal that while Pr substitutes isostructurally until x=0.50 in Y1−xPrxBaSrCu3O7, for x=0.75 and 1.0 few small intensity un-reacted lines are observed in the spectrum. The orthorhombic distortion decreases with an increase in x. Both x=0.75 and 1.0 samples are tetragonal. The c lattice parameter of the substituted samples increases with x, indicating probable substitution of comparatively bigger ionic radii Pr3+/4+ ion at Y3+ in Y1−xPrxBaSrCu3O7 system. The AC susceptibility results showed that the transition temperature Tc of the Y1−xPrxBaSrCu3O7 system decreases monotonically with an increase in x. Both x=0.75 and 1.0 samples do not show a superconducting transition down to 4.2 K. The critical concentration of Pr to completely suppress superconductivity in Y1−xPrxBaSrCu3O7 is higher (0.75) than that reported (0.55) for Y1−xPrxBa2Cu3O7. DC magnetic susceptibility measurements done on PrBaSrCu3O7 and PrBa2Cu3O7 samples at 0.5 T revealed that while the Pr ordering temperature seems to be 12 K for the former, the same is 17 K for the latter. These results indicate that the ordering temperature of Pr moments in RE1−xPrx : 123-type systems, which decides the Pr4f hybridisation with the Cu–O conduction band has a direct connection to the suppression of superconductivity. The lower TN of Pr explains the less destructive effect of the same on the superconductivity of the parent undoped system.  相似文献   

18.
It is expected that joint existence of ferromagnetic properties and ferroelectric structural phase transition in diluted magnetic semiconductors IV-VI leads to new possibilities of these materials. Temperature of ferroelectric transition for such crystals can be tuned by the change of Sn/Ge ratio. Magnetic susceptibility, Hall effect, resistivity and thermoelectric power of Ge1−xySnxMnyTe single crystals grown by Bridgeman method (x=0.083-0.115; y=0.025-0.124) were investigated within 4.2-300 K. An existence of FM ordering at TC∼50 K probably due to indirect exchange interaction between Mn ions via degenerated hole gas was revealed. A divergence of magnetic moment temperature dependences at T?TC in field-cooled and zero-field-cooled regimes is obliged to magnetic clusters which are responsible for superparamagnetism at T>TCTf (freezing temperature) and become ferromagnetic at TC arranging spin glass state at T<TfTC. Phase transition of ferroelectric type at T≈46 K was revealed. Anomalous Hall effect which allows to determine magnetic moment was observed.  相似文献   

19.
The thermoelectric properties of Mo-substituted CrSi2 were studied. Dense polycrystalline samples of Mo-substituted hexagonal C40 phase Cr1−xMoxSi2 (x=0–0.30) were fabricated by arc melting followed by spark plasma sintering. Mo substitution substantially increases the carrier concentration. The lattice thermal conductivity of CrSi2 at room temperature was reduced from 9.0 to 4.5 W m−1 K−1 by Mo substitution due to enhanced phonon–impurity scattering. The thermoelectric figure of merit, ZT, increases with increasing Mo content because of the reduced lattice thermal conductivity. The maximum ZT value obtained in the present study was 0.23 at 800 K, which was observed for the sample with x=0.30. This value is significantly greater than that of undoped CrSi2 (ZT=0.13).  相似文献   

20.
The effects of doping Al and Mn on the cohesive and thermophysical properties of MgB2 have been investigated using a Rigid Ion Model (RIM). The interatomic potential of this model includes contributions from the long-range Coulomb attraction and the short-range overlap repulsion and the van der Waals attraction. This model has been applied to describe the temperature dependence of the specific heat of MgB2, Mg1−xAlxB2 (x = 0.1–0.9) and Mg1−xMnxB2 (x = 0.01–0.04) in the temperature range 5 K  T  1000 K. The calculated results on cohesive energy (ϕ), Bulk modulus (BT), molecular force constant (f), Restrahalen frequency (ν0), Debye temperature (ΘD) and Gruneisen parameter (γ) are also reported for these materials. Our results on Bulk modulus, Restrahalen frequency and Debye temperature are closer to the available experimental data. The comparison between our calculated and available experimental results on the specific heat at constant volume for MgB2 and Mg1−xAlxB2 (x = 0.1–0.4), particularly, at lower temperatures has shown almost an excellent agreement. The trend of variation of the specific heat with temperature is more or less similar in pure and doped MgB2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号