首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The solid-liquid phase diagrams of binary mixtures of ammonium alum with ammonium iron(III) alum, with aluminum nitrate nonahydrate and with ammonium nitrate and of aluminum sulfate hexadecahydrate with aluminum nitrate nonahydrate are presented. The alum rich branches of the former three-phase diagrams were fitted by the Ott equation. The specific enthalpy of fusion/freezing of some compositions of the former three mixtures was determined by differential drop calorimetry.  相似文献   

2.
Isothermal three-phase equilibria of gas, aqueous, and hydrate phases for the {xenon (Xe) + cyclopropane (c-C3H6)} mixed-gas hydrate system were measured at two different temperatures (279.15 and 289.15) K. The structural phase transitions from structure-I to structure-II and back to structure-I, depending on the mole fraction of guest mixtures, occur in the (Xe + c-C3H6) mixed-gas hydrate system. The isothermal pressure–composition relations have two local pressure minima. The most important characteristic in the (Xe + c-C3H6) mixed-gas hydrate system is that the equilibrium pressure–composition relations exhibit the complex phase behavior involving two structural phase transitions and two homogeneous negative azeotropes. One of two structural phase transitions exhibits the heterogeneous azeotropic-like behavior.  相似文献   

3.
Using the Gibbs function of reaction, equilibrium pressure, temperature conditions for the formation of methane clathrate hydrate have been calculated from the thermodynamic properties of phases in the system CH4-H2O. The thermodynamic model accurately reproduces the published phase-equilibria data to within +/-2 K of the observed equilibrium boundaries in the range 0.08-117 MPa and 190-307 K. The model also provides an estimate of the third-law entropy of methane hydrate at 273.15 K, 0.1 MPa of 56.2 J mol(-1) K(-1) for 1/nCH4.H2O, where n is the hydrate number. Agreement between the calculated and published phase-equilibria data is optimized when the hydrate composition is fixed and independent of the pressure and temperature for the conditions modeled.  相似文献   

4.
We present the application of a mathematical method reported earlier by which the van der Waals-Platteeuw statistical mechanical model with the Lennard-Jones and Devonshire approximation can be posed as an integral equation with the unknown function being the intermolecular potential between the guest molecules and the host molecules. This method allows us to solve for the potential directly for hydrates for which the Langmuir constants are computed, either from experimental data or from ab initio data. Given the assumptions made in the van der Waals-Platteeuw model with the spherical-cell approximation, there are an infinite number of solutions; however, the only solution without cusps is a unique central-well solution in which the potential is at a finite minimum at the center to the cage. From this central-well solution, we have found the potential well depths and volumes of negative energy for 16 single-component hydrate systems: ethane (C2H6), cyclopropane (C3H6), methane (CH4), argon (Ar), and chlorodifluoromethane (R-22) in structure I; and ethane (C2H6), cyclopropane (C3H6), propane (C3H8), isobutane (C4H10), methane (CH4), argon (Ar), trichlorofluoromethane (R-11), dichlorodifluoromethane (R-12), bromotrifluoromethane (R-13B1), chloroform (CHCl3), and 1,1,1,2-tetrafluoroethane (R-134a) in structure II. This method and the calculated cell potentials were validated by predicting existing mixed hydrate phase equilibrium data without any fitting parameters and calculating mixture phase diagrams for methane, ethane, isobutane, and cyclopropane mixtures. Several structural transitions that have been determined experimentally as well as some structural transitions that have not been examined experimentally were also predicted. In the methane-cyclopropane hydrate system, a structural transition from structure I to structure II and back to structure I is predicted to occur outside of the known structure II range for the cyclopropane hydrate. Quintuple (L(w)-sI-sII-L(hc)-V) points have been predicted for the ethane-propane-water (277.3 K, 12.28 bar, and x(eth,waterfree) = 0.676) and ethane-isobutane-water (274.7 K, 7.18 bar, and x(eth,waterfree) = 0.81) systems.  相似文献   

5.
The influence of dissolved propane (up to 31.2 wt %) on the phase equilibria of 5 wt % polystyrene (PS) dissolved in 66/34 wt % trans/cis‐decahydronaphthalene (DHN) was measured over the temperature range of 323–423 K. A suitable temperature, pressure, and propane composition operating space was defined to measure intrinsic viscosities of a single fluid phase. Intrinsic viscosities of PS in cosolvent mixtures of propane and trans/cis‐DHN were measured between 323 and 423 K and between 70 and 208 bar. The addition of propane to the isomeric mixture of DHN resulted in a decreased solvent quality for PS, causing a contraction of the PS coil. The most dramatic decrease in solvent quality with the addition of propane occurred at 323 K and 70 bar with approximately a 36% reduction in the viscometric radius with the addition of 45 mol % propane to DHN. At 423 K, the solvent quality was less sensitive to the addition of propane and only a 13% reduction in the viscometric radius was observed at 70 bar and 45 mol % propane in DHN. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

6.
Pyrolysis of propane in the presence of acetylene and acetylene labeled with C-14 has been studied in the temperature range of 833–1019 K. The inhibition effect of acetylene on the thermal decomposition of propane is turning into an accelerating effect at higher temperature.
C14 833–1019 . .
  相似文献   

7.
The isothermal phase equilibria of the carbon dioxide + cyclopropane mixed-gas hydrate system were investigated by means of static temperature measurement and Raman spectroscopic analysis. Raman spectra indicated that the crystal structure of the carbon dioxide + cyclopropane mixed-gas hydrate changes from structure-I to structure-II and back to structure-I with an increase of the equilibrium carbon dioxide composition at 279.15 K, while each simple gas hydrate belongs to structure-I at the temperature. Whereas, unlike 279.15 K, no structural phase transition occurs along the isothermal stability boundary at 284.15 K.  相似文献   

8.
Pyrolysis of propane in the presence of propylene and propylene labeled with C-14 has been studied in the temperature range of 833–1019 K. The strong inhibition effect of propylene on the thermal decomposition of propane has been confirmed.  相似文献   

9.
The pyrolysis of propane in the presence of hydrogen, deuterium and argon was studied in the temperature range 890–1019 K. The acceleration of the reaction in the presence of hydrogen has been observed.
, 890–1019 . .
  相似文献   

10.
Pyrolysis of propane in the presence of ethylene and ethylene labeled with14C has been studied in the temperature range 773–1019 K. The disappearance of the inhibiting effect of ethylene on the thermal decomposition of propane with increasing temperature was observed.
14C 773–1019 . .
  相似文献   

11.
《Fluid Phase Equilibria》1988,44(1):95-103
In the near-critical region of propane, phase equilibria of binary mixtures of propane + acenaphthene have been investigated experimentally. Apart from the three-phase equilibrium solid acenaphthene + liquid + vapour, two-phase boundaries liquid + vapour and solid acenaphthene + liquid have been investigated over the entire mole fraction range. The measurements were performed in the temperature region 350–420 K with pressures up to 10 MPa.  相似文献   

12.
A gas phase simulated moving bed technology using improved 13X zeolite beads and isobutane as desorbent is assessed for the separation of propane/propylene. Adsorption equilibrium (via gravimetric method) and dynamics (via breakthrough curves) were determined in order to validate the mathematical model used to describe the adsorption process. Simulation results have shown that it is possible to separate propylene from a mixture with propane using gas phase SMB technology. The results indicate that high purity propylene (99.99 % desorbent free basis) can be recovered up to 99.96 % with a productivity of 17.6 mol kg?1 h?1, with propane being also recovered at high levels (99.98 %) and high purity (99.89 % desorbent free basis). Comparing the SMB simulation results obtained for this new 13X zeolite beads with those obtained with a commercial 13X zeolite characterized elsewhere, it was found that the productivity of the process was raised by 25 %, with half desorbent consumption.  相似文献   

13.
Isothermal phase equilibria (pressure-composition relations in hydrate, gas, and aqueous phases) in the {difluoromethane (HFC-32) + 1,1,1,2-tetrafluoroethane (HFC-134a)} mixed-gas hydrate system were measured at the temperatures 274.15 K, 279.15 K, and 283.15 K. The heterogeneous azeotropic-like behaviour derived from the structural phase transition of (HFC-32 + HFC-134a) mixed-gas hydrates appears over the whole temperature range of the present study. In addition to the heterogeneous azeotropic-like behaviour, the isothermal phase equilibrium curves of the (HFC-32 + HFC-134a) mixed-gas hydrate system exhibit the negative homogeneous azeotropic-like behaviour at temperatures 279.15 K and 283.15 K. The negative azeotropic-like behaviour, which becomes more remarkable at higher temperatures, results in the lower equilibrium pressure of (HFC-32 + HFC-134a) mixed-gas hydrates than those of both simple HFC-32 and HFC-134a hydrates. Although the HFC-134a molecule forms the simple structure-II hydrate at the temperatures, the present findings reveal that HFC-134a molecules occupy a part of the large cages of the structure-I mixed-gas hydrate.  相似文献   

14.
A thermodynamic model for the prediction of CO2 hydrate phase stability conditions in the presence of pure and mixed salts solutions and various ionic liquids (ILs) is developed. In the proposed model van der Waals and Platteeuw model is used to compute the hydrate phase, Peng–Robinson equation of state (PR-EoS) for the gas phase and the Pitzer–Mayorga–Zavitsas-Hydration model is employed to calculate the water activity in the liquid water phase. This model is an extension of the model developed by Tumba et al. (2011) for the prediction of methane and CO2 hydrate phase stability conditions in the presence of tributylmethylphosphonium methylsulfate IL solution. Shabani et al. (2011) mixing rule is modified by incorporating the water–inhibitor (salt/IL) interaction parameter to calculate the water activity in mixed salt solutions. The model predictions are also calculated using the Pitzer–Mayorga model separately and compared with predictions of the developed model. The model predictions are compared with experimental results on the phase stability of CO2 hydrate in the presence of ILs, pure and mixed salts as reported in literatures. The ILs are chosen from imidazolium cationic family with various anion groups such as bromide (Br), tetrafluoroborate (BF4), trifluoromethanesulfonate (TfO), and nitrate (NO3) and the common salts such as NaCl, KCl and CaCl2. Good agreement between the developed model predictions and the literature data is observed. The overall average absolute deviation (AARD%) with Pitzer–Mayorga–Zavitsas-Hydration model is observed to be within ±1.36% while Pitzer–Mayorga model accuracy were about ±1.44 %. Further, the model is extended to calculate the inhibition effect of selected inhibitors (ILs and salts) on CO2 hydrate formation.  相似文献   

15.
16.
17.
The thermodynamic stability of a clathrate hydrate encaging non-spherical molecules has been investigated by examining the free energy of cage occupancy. In the present study, a generalized van der Waals and Platteeuw theory is extended to treat the rotational motion of guest molecules in clathrate hydrate cages. The vibrational free energy of both guest and host molecules is divided into harmonic and anharmonic contributions. The anharmonic free energy associated with the non-spherical nature of the guest molecules is evaluated as a perturbation from the spherical guest. Predicted thermodynamic properties are compared with measured values. It is shown that this anharmonic contribution is important in the free energy of the hindered rotation of the guests.  相似文献   

18.
Liquid-liquid cloud point diagrams of solutions of nearly monodisperse samples of polystyrene (PS), and binary mixtures of nearly monodisperse PS’s, both in methylcyclohexane (MCH), were determined for several polymer molecular weights (Mw) at 0.1 MPa. The bimodal mixtures (PS[Mw(1),ρ(1)] + PS[Mw(2),ρ(2)], Mw(1)=90×103 g/mol, Mw(2)=13×103 g/mol, 5.78 × 103 g/mol, and 2.2 × 103 g/mol, ρ=1.06) were prepared constraining 〈Mw〉=38.6×103 g/mol, ρ=Mw/Mn is the polydispersity index. In each case the cloud point curves (CPC’s) for the bimodal mixtures are strongly skewed, lying well above CPC for 〈Mw〉 when φ<φCRITICAL, and below CPC for 〈Mw〉 when φ>φCRITICAL; φ is volume fraction polymer in the polymer/solvent mixture. The experimental results are discussed in the context of empirical and mean-field representations.  相似文献   

19.
The effect of low-dosage water-soluble hydroxyethyl cellulose (approximate MW~90,000 and 250,000) as a member of hydroxyalkyl cellulosic polymer group on methane hydrate stability was investigated by monitoring hydrate dissociation at pressures greater than atmospheric pressure in a closed vessel. In particular, the influence of molecular weight and mass concentration of hydroxyethyl cellulose (HEC) was studied with respect to hydrate formation and dissociation. Methane hydrate formation was performed at 2℃ and at a pressure greater than 100 bar. Afterwards, hydrate dissociation was initiated by step heating from -10℃ at a mild pressure of 13 bar to 3℃, 0℃ and 2℃. With respect to the results obtained for methane hydrate formation/dissociation and the amount of gas uptake, we concluded that HEC 90,000 at 5000 ppm is suitable for long-term gas storage and transportation under a mild pressure of 13 bar and at temperatures below the freezing point.  相似文献   

20.
Suri SK  Pal M 《Talanta》1984,31(4):298-300
A new, simple and rapid method based on the principle of liquid-liquid phase equilibria has been developed for the analysis of binary mixtures of chemically similar organic compounds. The method does not require elaborate instrumentation and can be used to analyse mixtures of members of homologous series. The application of the method has been illustrated by analysing binary mixtures of n-hexane and n-octane; the maximum uncertainty in this analysis is ~2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号