首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
A sequential arsenic extraction method was developed that yielded extraction efficiencies (EE) that were approximately double those using current methods for terrestrial plants. The method was applied to plants from two arsenic contaminated sites and showed potential for risk assessment studies. In the method, plants were extracted first by 1:1 water-methanol followed by 0.1 M hydrochloric (HCl) acid. Total arsenic in plant and soil samples collected from contaminated sites was mineralized by acid digestion and detected by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and hydride generation-atomic absorption spectrometry (HG-AAS). Arsenic speciation was done by high performance liquid chromatography coupled with HG-AAS (HPLC-HGAAS) and by HPLC coupled with ICP-mass spectrometry (HPLC-ICP-MS). Spike recovery experiments with arsenite (As(III)), arsenate (As(V)), methylarsonic acid (MA) and dimethylarsinic acid (DMA) showed stability of the species in the extraction processes. Speciation analysis by X-ray absorption near edge spectroscopy (XANES) demonstrated that no transformation of As(III) and As(V) occurred due to sample handling. Dilute HCl was efficient in extracting arsenic from plants; however, extraction and determination of organic species were difficult in this medium. Sequential extraction with 1:1 water-methanol followed by 0.1 M-HCl was most useful in extracting and speciating both organic and inorganic arsenic from plants. Trace amounts of MA and DMA in plants could be detected by HPLC-HGAAS aided by the process of separation and preconcentration of the sequential extraction method. Both organic and inorganic arsenic compounds could be detected simultaneously in synthetic gastric fluid extracts (GFE) but EEs by this method were lower than those of the sequential method. The developed sequential method was shown to be reliable and applicable to various terrestrial plants for arsenic extraction and speciation.  相似文献   

2.
The determination of arsenic species in plants grown on contaminated sediments and soils is important in order to understand the uptake, transfer and accumulation processes of arsenic. For the separation and detection of arsenic species, hyphenated techniques can be applied successfully in many cases. A lack of investigations exists in the handling (e.g., sampling, pre-treatment and extraction) of redox- and chemically labile arsenic species prior to analysis. This paper presents an application of pressurized liquid extraction (PLE) using water as the solvent for the effective extraction of arsenic species from freshly harvested plants. The method was optimized with respect to extraction time, number of extraction steps and temperature. The thermal stability of the inorganic and organic arsenic species under PLE conditions (60-180 degrees C) was tested. The adaptation of the proposed extraction method to freeze-dried, fine-grained material was limited because of the insufficient reproducibility in some cases.  相似文献   

3.
Response surface methodology was applied to optimize the parameters for microwave‐assisted extraction of six major inorganic and organic arsenic species (As(III), As(V), dimethyl arsenic acid, monomethyl arsenic acid, p‐arsanilic acid, and roxarsone) from chicken tissues, followed by detection using a high‐performance liquid chromatography with inductively coupled mass spectrometry detection method, which allows the simultaneous analysis of both inorganic and organic arsenic species in the extract in a single run. Effects of extraction medium, solution pH, liquid‐to‐solid ratio, and the temperature and time of microwave‐assisted extraction on the extraction of the targeted arsenic species were studied. The optimum microwave‐assisted extraction conditions were: 100 mg of chicken tissue, extracted by 5 mL of 22% v/v methanol, 90 mmol/L (NH4)2HPO4, and 0.07% v/v trifluoroacetic acid (with pH adjusted to 10.0 by ammonium hydroxide solution), ramping for 10 min to 71°C, and holding for 11 min. The method has good extraction performance for total arsenic in the spiked and nonspiked chicken tissues (104.0 ± 13.8% and 91.6 ± 7.8%, respectively), except for the ones with arsenic contents close to the quantitation limits. Limits of quantitation (S/N = 10) for As(III), As(V), dimethyl arsenic acid, monomethyl arsenic acid, p‐arsanilic acid, and roxarsone in chicken tissues using this method were 0.012, 0.058, 0.039, 0.061, 0.102, and 0.240 mg/kg (dry weight), respectively.  相似文献   

4.
A solid-phase microextraction (SPME) method has been developed to determine two methylated arsenic species in human urine samples by GC-MS. The direct extraction of the methyl arsenic compounds by SPME after thioglycol methylate derivatization was studied. Direct extraction with SPME was suitable for the determination of trace levels of dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) in urine samples. Four different commercial SPME fibers were tested for the extraction of methyl arsenic compounds, and the best results were obtained using the polydimethylsiloxane coating. The extraction and desorption time profiles of DMA and MMA were determined. The detection limits for DMA and MMA using the SPME-GC-MS method were 0.12 and 0.29 ng/ml, respectively. The method is linear in the 1 to 200 ng/ml range.  相似文献   

5.
Schmidt AC  Haufe N  Otto M 《Talanta》2008,76(5):1233-1240
An easily feasible, species-conserving and inexpensive protocol for the extraction of total arsenic and arsenic species from terrestrial plants was designed and applied to the investigation of accumulation and metabolization of arsenite (As(III)), arsenate (As(V)), monomethylarsonate (MMA(V)), and dimethylarsinate (DMA(V)) by the model plant Tropaeolum majus. In contrast to existing extraction methods hazardous additives and elaborate procedures to enhance the extraction yields were omitted. The proposed protocol is suited to down-scale the sample sizes used for the extractions and to promote a compartmentally resolved analysis of the arsenic distribution within individual leaves, leaf stalks, and stems instead of the conventional extraction of pooled samples. In a two-step extraction, the high extraction efficiencies (85-92%) for arsenic achieved by phosphate buffer from larger amounts (200mg) of homogenized leaf material in a one-step extraction, could be enhanced to 94-100% in a second extraction step. A strong dependence of the arsenic extractability on the type of arsenic species accumulated in the tissue as well as on the type of the tissue (leaf, leaf stalk, stem) was found. For the extraction of 5mm long segments cut from individual leaves without previous homogenization of the plant parts yields between 75 and 93% depending on arsenic species prevailing in the cells were obtained using 1 or 10mM phosphate buffer. The total extraction and analysis protocol was validated using a standard reference material as well as by spiking experiments. The arsenic species analysis by IC/ICPMS revealed a number of nine unidentified metabolites in the plant extracts in addition to the species MMA(V), DMA(V), As(III), and As(V) that were provided to the plants during their growth phase.  相似文献   

6.
CZE for the speciation of arsenic in aqueous soil extracts   总被引:2,自引:0,他引:2  
We developed two separation methods using CZE with UV detection for the determination of the most common inorganic and methylated arsenic species and some phenylarsenic compounds. Based on the separation method for anions using hydrodynamic sample injection the detection limits were 0.52, 0.25, 0.27, 0.12, 0.37, 0.6, 0.6, 1.2 and 1.0 mg As/L for phenylarsine oxide (PAO), p-aminophenylarsonic acid (p-APAA), o-aminophenylarsonic (o-APAA), phenylarsonic acid (PAA), 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenite or arsenious acid (As(III)) and arsenate (As(V)), respectively. These detection limits were improved by large-volume sample stacking with polarity switching to 32, 28, 14, 42, 22, 27, 26 and 27 microg As/L for p-APAA, o-APAA, PAA, roxarsone, MMA, DMA, As(III) and As(V), respectively. We have applied both methods to the analysis of the arsenic species distribution in aqueous soil extracts. The identification of the arsenic species was validated by means of both standard addition and comparison with standard UV spectra. The comparison of the arsenic species concentrations in the extracts determined by CZE with the total arsenic concentrations measured by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) indicated that CZE is suited for the speciation of arsenic in environmental samples with a high arsenic content. The extraction yield of phenylarsenic compounds from soil was derived from the arsenic concentrations of the aqueous soil extracts and the total arsenic content of the soil determined by ICP-AES after microwave digestion. We found that 6-32% of the total amount of arsenic in the soil was extractable by a one-step extraction with water in dependence on the type of arsenic species.  相似文献   

7.
An inductively coupled plasma mass spectrometer (ICP-MS) was used as an ion chromatographic (IC) detector for the speciation analysis of arsenic in edible oil. The arsenic species studied include arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine and arsenocholine. Gradient elution using (NH(4))(2)CO(3) and methanol at pH 8.5 allowed the chromatographic separation of all species in less than 8 min. Effluents from the IC column were delivered to the nebulizer of ICP-MS for the determination of arsenic. The concentrations of arsenic species have been determined in several used and fresh vegetable oil samples. In this study, a microwave-assisted extraction method was used for the extraction of arsenic species from oil samples. The extraction efficiency was better than 92% and the recoveries from spiked samples were in the range of 90-105%. The precision between sample replicates was better than 8% for all determinations. The limits of detection were in the range of 0.008-0.024 ng mL(-1) for various arsenic species based on peak height, which corresponded to 0.08-0.24 ng g(-1) in the original oil sample. The major arsenic species in the used oil samples varied based on the food items cooked.  相似文献   

8.
For the determination of arsenic compounds in terrestrial plant samples, a crucial step is the efficient extraction of arsenic from the solid plant matrix. However, the use of methanol-water extraction often resulted in low extraction efficiencies of less than 50%. In this study, eight solid-liquid extraction procedures (mainly based on mechanical mixing and sonication) were evaluated for the recovery of arsenic species from a submerged freshwater plant, coontail (Ceratophyllum demersum), collected in Moira River, Ontario, Canada. Speciation of As in the extracts was carried out with both anion-, and cation-exchange HPLC with sector-field inductively coupled plasma mass spectrometric (SF-ICP-MS) detection. The results obtained depended critically on the extraction solvents used in different extraction procedures. Extraction with methanol-water led only to 9%–44% recoveries of As. A high extraction yield (approximately 82%) was obtained by water extraction. Alkaline hydrolysis also resulted in high extraction efficiencies (86%–98%), but severe oxidation of As(III) to As(V) was observed. A protease enzymatic extraction led to a recovery of 48%. Approximately 0.5% of the total As in the plant sample was lipid-soluble. It was found that the extraction of inorganic arsenic species was suppressed by the presence of methanol in the extraction solvents, while high content of methanol in the extraction solvents was effective for the extraction of organic arsenic species. Therefore, it is recommended to perform the extraction both with water alone and with methanol-water (9+1, v/v), in order to obtain the complete As species profile in terrestrial plants.  相似文献   

9.
A new analytical method was developed to determine the bioavailable arsenic species (arsenite, arsenate, monomethylarsonic acid, and dimethylarsonic acid) in soil samples using high‐performance liquid chromatography with inductively coupled plasma mass spectrometry. Bioavailable arsenic was extracted with ammonium phosphate buffer by a simplified one‐step solvent extraction procedure. To estimate the effect of variables on arsenic extraction, a two‐level Plackett–Burman factorial design was conducted to screen the significant factors that were further investigated by a separate univariate approach. The optimum conditions were confirmed by compromising the stability of arsenic species and the extraction efficiency. The concentration of arsenic species was determined in method blank and soil‐certified reference materials both spiked with standard solutions of arsenic species. All the target arsenic species were stable during the whole extraction procedure. Furthermore, the proposed method was applied to release bioavailable arsenic from contaminated soil samples, showing that the major arsenic species in soil samples were inorganic arsenic: arsenite and arsenate, of which the latter was dominant.  相似文献   

10.
Phytoremediation has been investigated as an alternative to excavation to remediate contamination in soil. In this work, Allium fistulosum (green onions) and Pteris cretica cv Mayii (moonlight ferns) were investigated for phytoremediation. Green onions were planted in lead-spiked soil, and chelating agents were introduced to enhance the uptake of lead by the plants. Lead uptake was low in the absence of chelating reagents. Ethylenediaminetetraacetic acid (EDTA) significantly enhanced the concentration of lead in the stems of green onions, while propylenediaminetetraacetic acid (PDTA) did not induce lead absorption.Moonlight ferns (P. cretica cv Mayii) were planted in a hydroponic system to which arsenic (III), arsenic (V), and monomethylarsenate (MMA) were added with hydroponic solution. Ferns exposed to arsenic (III) showed the highest extraction of arsenic followed by ferns exposed to arsenic (V). The extraction of arsenic by the ferns was higher when arsenic (III) was mixed with arsenic (V) than the combination of arsenic (III) and MMA. These results suggest that inorganic arsenic is phytoextracted preferentially to MMA.  相似文献   

11.
Eight extraction agents (water, methanol–water mixtures in various ratios, methanol, a 20 mmol l?1 ammonium phosphate buffer, and a methanol–phosphate buffer) were tested for the extraction of arsenic compounds from fruits, stems + leaves, and roots of pepper plants grown on soil containing 17.2 mg kg?1 of total arsenic. The arsenic compounds in the extracts were determined using high‐performance liquid chromatography–hydride generation inductively coupled plasma mass spectrometry. Whereas pure water was the most effective extraction agent for fruits (87 ± 3.3% extraction yield) and roots (96 ± 0.6% extraction yield), the 20 mM ammonium phosphate buffer at pH 6 extracted about 50% of the arsenic from stems + leaves. Decreasing extractability of the arsenic compounds was observed with increasing methanol concentrations for all parts of the pepper plant. In pepper fruits, arsenic(III), arsenic(V), and dimethylarsinic acid (DMA) were present (25%, 37%, and 39% respectively of the extractable arsenic). Arsenic(V) was the major compound in stems + leaves and roots (63% and 53% respectively), followed by arsenic(III) representing 33% and 42% respectively, and small amounts (not exceeding 5%) of DMA and methylarsonic acid were also detected. Hence, for a quantitative extraction of arsenic compounds from different plant tissues the extractant has to be optimized individually. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The concentration and speciation of arsenic incorporated by plants grown in the presence of different arsenic compounds was compared, and the influence of plant sample pretreatment and extraction procedures on the recovery and reliability of speciation analyses was studied. It was concluded that sample pretreatment greatly affected the extraction efficiency, but did not change arsenic speciation. The most suitable extraction procedure involved dried plant material without the use of liquid nitrogen. To assess the ability of White mustard to uptake arsenic in different forms, samples were cultivated in nutrient solutions containing either As(III), As(V), monomethylarsonic acid (MMA) or dimethylarsinic acid (DMA). The translocation factor was the highest (0.70) when DMA was added to the nutrient solution, however the overall As concentration in plant tissues was the lowest in this case. Only inorganic As was found in plant tissues when either As(III) or As(V) was added to the nutrient solution. When organic arsenic was present in the nutrient medium, however, it was partially transformed by the plants into inorganic forms.  相似文献   

13.
Vela NP  Heitkemper DT  Stewart KR 《The Analyst》2001,126(7):1011-1017
Arsenic present in freeze-dried carrots was extracted using accelerated solvent extraction (ASE). Several parameters, including selection of the dispersing agent, extraction time, number of extraction cycles, particle size and extraction temperature, were evaluated to optimize the ASE method. Filtering and treatment with C-18 SPE cartridges were also evaluated as part of the sample preparation procedure before speciation analysis. The method was validated by spiking single arsenical and mixed arsenical standards on the dispersing agent and on portions of freeze-dried carrot prior to extraction. LC-ICP-MS was used to determine individual arsenic species in the carrot extracts. A weak anion-exchange column was used for the separation of As(III), As(v), monomethylarsonic acid (MMA), dimethylarsinic acid and arsenobetaine. Optimized sample preparation conditions were applied to the extraction of arsenic in nine freeze-dried carrot samples. Total arsenic concentration in the carrot samples ranged from less than 20 ng g(-1) to 18.7 microg g(-1), dry mass. Extraction efficiency, defined as the ratio of the sum of individual arsenic species concentrations to total arsenic, ranged from 80 to 102% for freeze-dried carrots with arsenic concentrations greater than the limit of quantitation. Inorganic As(III) and As(v) were the only species found in samples that contained less than 400 ng g(-1) total arsenic. MMA and an unidentified arsenic compound were present in some of the samples with higher total arsenic content.  相似文献   

14.
As prerequisite for the investigation of arsenic-binding proteins in plants, the general influence of different extraction parameters on the binding behaviour of arsenic to the plant protein pool was investigated. The concentration of the extraction buffer affected the extraction yield both for proteins and for arsenic revealing an optimal buffer concentration of 5 mM Tris/HCl, pH 8. The addition of 1 or 2% (w/v) SDS to the extraction buffer produced a two- to threefold enhancement of the total protein extraction yield but strongly suppressed the simultaneous extraction of arsenic from 80 ± 8% extraction yield obtained without SDS to 48 ± 2% in presence of 2% (w/v) SDS. The arsenic binding capacity of the protein fraction obtained after extraction with Tris buffer and protein precipitation by trichloroacetic acid in acetone was estimated to be 1.4 ± 0.6% independently on the original spiking concentration of arsenic provided in the form of monomethylarsonate to the extracts. Due to the low total protein concentrations of the plant extracts that varied in the range from 75 to 412 μg mL−1 depending on the extraction parameters, high arsenic concentrations of 263-1001 mg (kg protein mass)−1 resulted for spiking concentrations of 10 mg As L−1. The optimized protein isolation procedure was applied to plants grown under arsenic exposure and revealed a similar arsenic binding capacity as for the spiked protein extracts.  相似文献   

15.
建立了稻米中砷酸根[As(Ⅴ)]、亚砷酸根[As(Ⅲ)]、砷甜菜碱(AsB)、一甲基砷(MMA)和二甲基砷(DMA)的液相色谱-电感耦合等离子体质谱(LC-ICP-MS)检测方法。以0.3 mol/L硝酸水溶液为提取试剂,样品在石墨消解仪中于95 ℃消解1.5 h,上清液供LC-ICP-MS分析。5种砷形态采用Dionex IonPac AS19阴离子交换柱(250 mm×4 mm)分离,经ICP-MS检测。比较了4种提取液对稻米中5种砷形态的提取效率,并对提取溶剂的浓度、提取温度和提取时间等条件进行了优化。通过加标回收试验结合测定标准物质考察了方法准确度及精密度,在2个加标水平上各形态的回收率为89.6%~99.5%,RSD(n=5)不大于3.6%,大米标准物质中各形态之和的测定结果与其标准值吻合,5种砷形态的线性范围AsB和DMA为0.05~200 μg/L,As(Ⅲ)和MMA为0.10~400 μg/L,As(V)为0.15~600 μg/L,方法检出限为0.15~0.45 μg/kg。结果表明,本方法简单、灵敏、耐用,可用于稻米中5种砷形态的准确定量和风险评估。  相似文献   

16.
Investigations regarding the transfer and metabolism of arsenic species in plants require mild extraction conditions to conserve the original composition of arsenic species. Beside the use of water or water/methanol for extraction of arsenic species from plant samples, enzymes can assist this procedure by digestion of cellulose and other constituents of cell walls, resulting in a faster, more efficient extraction technique which preserves the arsenic species. The investigations presented here were focused on the stability of certain arsenic species in enzymatic solutions, optimal conditions for their chromatographic separation and detection namely by means of ion chromatography–inductively coupled plasma mass spectrometry and improvements with respect to extraction efficiency. With commercially available enzymes and enzyme mixtures, the digestion rate of soluble starch as model cellulose was determined using high-performance anion exchange chromatography–pulsed amperometric detection analysis of glucose as the major digestion product. The most effective digestion rate (80% within 4?h) was obtained with Viscozyme®. This enzyme mixture was applied to extracted arsenic species from algae and terrestrial plant materials. Qualitative and quantitative differences in the results between enzyme-assisted and water extractions were obtained and discussed. The results show that the application of enzymes in mild extraction protocols should be evaluated as an additional step for the identification of As-metabolics in organisms. Careful selection of suitable enzyme mixtures can overcome the disadvantage that extraction efficiency is very organism-specific.  相似文献   

17.
Kahakachchi C  Uden PC  Tyson JF 《The Analyst》2004,129(8):714-718
The abilities of various extractants to recover four arsenic species [As(iii), As(v), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA)] from soils spiked with 20 micro g g(-1) As were investigated. The extractants were water, buffer solutions (citrate and ammonium dihydrogen phosphate), acidic solutions (phosphoric acid and acetic acid), a basic solution (sodium hydroxide) and household chemicals (vinegar and Coca Cola). Gentle shaking at room temperature with each extractant for 24 h gave different recoveries for the different arsenic species. With 0.1 M NaOH solution 46% As(iii), 53% DMA, 100% MMA and 84% As(v) were recovered. A rapid extraction procedure using a sonicator probe has been developed to obtain higher extraction efficiencies. Extracts of arsenic-spiked soil, SRM 2711 Montana soil and SRM 2709 San Joaquin soil were analyzed by HPLC-ICP-MS. In the SRM water extracts, DMA and MMA were identified in addition to inorganic arsenic. The solution detection limits (3s) were 0.1, 0.12, 0.13 and 0.15 ng mL(-1) for As(iii), DMA, MMA and As(v), respectively for HPLC-ICP-MS.  相似文献   

18.
The extraction of arsenic from freeze-dried apples and subsequent determination of individual arsenic species by HPLC-ICP-MS is described. Solvent extraction with sonication using various aqueous and aqueous/solvent mixtures was initially evaluated by measuring total arsenic extracted by ICP-MS. A two step procedure using overnight treatment with alpha-amylase enzyme followed by sonication for 6 h with 40:60 acetonitrile-water was found to provide good extraction efficiency. The concentration of arsenic extracted was compared with the concentration of total arsenic in the samples determined using ICP-MS after microwave digestion in order to calculate extraction efficiency. Individual arsenic species in the extracts were measured using HPLC-ICP-MS. The three most abundant arsenic species found were arsenite, arsenate and dimethylarsinic acid. Total arsenic concentrations in the freeze-dried apple samples ranged from 8.2 to 80.9 micrograms kg-1 As, dry mass. By HPLC-ICP-MS, the relative amount of inorganic arsenic in the samples ranged from 73 to 90% of the sum of the arsenic species detected in each sample.  相似文献   

19.
Plants and soil collected above an ore vein in Gasen (Austria) were investigated for total arsenic concentrations by inductively coupled plasma mass spectrometry (ICP‐MS). Total arsenic concentrations in all samples were higher than those usually found at non‐contaminated sites. The arsenic concentration in the soil ranged from ∼700 to ∼4000 mg kg−1 dry mass. Arsenic concentrations in plant samples ranged from ∼0.5 to 6 mg kg−1 dry mass and varied with plant species and plant part. Examination of plant and soil extracts by high‐performance liquid chromatography–ICP‐MS revealed that only small amounts of arsenic (<1%) could be extracted from the soil and the main part of the extractable arsenic from soil was inorganic arsenic, dominated by arsenate. Trimethylarsine oxide and arsenobetaine were also detected as minor compounds in soil. The extracts of the plants (Trifolium pratense, Dactylis glomerata, and Plantago lanceolata) contained arsenate, arsenite, methylarsonic acid, dimethylarsinic acid, trimethylarsine oxide, the tetramethylarsonium ion, arsenobetaine, and arsenocholine (2.5–12% extraction efficiency). The arsenic compounds and their concentrations differed with plant species. The extracts of D. glomerata and P. lanceolata contained mainly inorganic arsenic compounds typical of most other plants. T. pratense, on the other hand, contained mainly organic arsenicals and the major compound was methylarsonic acid. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
This paper describes the use of dilute nitric acid for the extraction and quantification of arsenic species. A number of extractants (e.g. water, 1.5 M orthophosphoric acid, methanol-water and dilute nitric acid) were tested for the extraction of arsenic from marine biological samples, such as plants that have proved difficult to quantitatively extract. Dilute 2% (v/v) nitric acid was found to give the highest recoveries of arsenic overall and was chosen for further optimisation. The optimal extraction conditions for arsenic were 2% (v/v) HNO3, 6 min−1, 90 °C. Arsenic species were found to be stable under the optimised conditions with the exception of the arsenoriboses which degraded to a product eluting at the same retention time as glycerol arsenoribose. Good agreement was found between the 2% (v/v) HNO3 extraction and the methanol-water extraction for the certified reference material DORM-2 (AB 17.1 and 16.2 μg g−1, respectively, and TETRA 0.27 and 0.25 μg g−1, respectively), which were in close agreement with the certified concentrations of AB 16.4 ± 1.1 μg g−1 and TETRA 0.248 ± 0.054 μg g−1.To preserve the integrity of arsenic species, a sequential extraction technique was developed where the previously methanol-water extracted pellet was further extracted with 2% (v/v) HNO3 under the optimised conditions. Increases in arsenic recoveries between 13% and 36% were found and speciation of this faction revealed that only inorganic and simple methylated species were extracted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号