首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
河台金矿中稀土元素在韧性剪切过程中迁移行为的研究   总被引:4,自引:3,他引:4  
通过对两类糜棱岩及其原岩的稀土元素含量的分析研究, 结果表明, 稀土元素在韧性剪切过程中发生有规律的成分变异. 在云母石英片岩及混合岩形成糜棱岩、超糜棱岩过程中, 即随着变形强度的增强, 单个稀土元素、轻稀土、重稀土和稀土总量均出现有规律的增加或减少, 而稀土元素配分模式不变. 通过对构造岩变形前后的等比分析, 认为两类不同的糜棱岩类中稀土元素的成分变异极小, 但存在少量稀土元素的迁入和迁出, 变化的原因是在岩石变形过程中发生了体积的改变和大量的流体作用影响, 并导致轻稀土相对富集、重稀土相对亏损的分异作用.  相似文献   

2.
The elastic constants of poly(L ‐lactic acid) (PLLA) crystals are reported on the basis of a commercial software package and the published crystal structure of the α form. A chain modulus of 36 GPa and a shear modulus of 3 GPa have been obtained for cylindrically symmetric aggregates of perfectly oriented crystals. The helical conformation of the PLLA molecule reduces the stiffness in the chain axis direction because bond rotation plays a significant role in the deformation. X‐ray crystal strain measurements suggest that shear of the α crystal parallel to the helix axis is the easiest mode of deformation, in agreement with the expectations obtained from the low shear modulus of 3 GPa obtained from the theoretical calculations. A combination of small‐ and wide‐angle X‐ray scattering, differential scanning calorimetry, dynamic mechanical thermal analysis, and shrinkage measurements has been used to characterize the structure that develops and the crystal transformation that occurs during fiber processing. The structure that develops during processing very much depends on the crystal transformation, and a structural model is proposed for fibers at different degrees of plastic deformation. The transformation of the α crystal into the β form and vice versa is governed primarily by shear along the helix axis because the chains must shear past each other during the crystal transformation, disrupting the lamellar packing. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 892–902, 2007  相似文献   

3.
Shales, granites and rock salt are currently under investigation as host rocks for radioactive waste. With respect to heat‐producing waste (spent fuel, high‐active waste) these rock types comprise contrasting mechanical and chemical behavior. The differences are due to the respective geological formations: Shales form by slow accumulation of fine‐grained minerals from seawater with subsequent compaction and diagenesis; crystallization of deep‐seated magmas at 700 to 850°C is the process that generates granitic rocks in the upper 20 km of the earth's continental crust; rock salt is a chemical sediment which forms by precipitation of chloride and sulfate minerals from seawater evaporation in shallow marine basins under arid conditions. The extent of chemical reactions between granitic rocks and migrating saline fluids upon canister‐induced heating is quite small. However, thermally induced reactions between sheet silicate minerals in shales may result in a gradual loss of adsorption capacities for released radionuclides. Canister‐induced temperature gain in rock salt results in increasing creep rates which lead to an enhanced enclosure process. Great care has to be taken in the selection of salt formations as host rocks with respect to brines; depending on their composition and temperature brines might react with e.g. potash‐seams.  相似文献   

4.
Developing the use of polymers from renewable sources to build hydrogels with tailored mechanical properties has become an increasing focus of research. The impact of the thermo‐reversible physical networks of gelatin (arising from the formation of triple‐helices) on the structure formation of a chemical network, obtained by crosslinking with glutaraldehyde (a non‐catalytic crosslinker), was studied using optical rotation, oscillatory rheology, and large strain mechanical deformation. We observed a direct correlation between the storage shear modulus of the chemical network grown in the gel state (i.e., simultaneously with the physical network) and the amount of gelatin residues in the triple‐helix conformation (χ). Since χ is directly affected by temperature, the value of the storage modulus is also sensitive to changes in the temperature of gel formation. χ values as low as 12% lead to an increase of the shear storage modulus of the crosslinked gel by a factor of 2.7, when compared to a chemical network obtained in the sol state (i.e., in the absence of a physical network). Our results show that the physical network acts as a template, which leads to a greater density of the chemical crosslinks and a corresponding higher elastic modulus, beyond what is otherwise achieved in the absence of a physical network. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1850–1858  相似文献   

5.
During in situ low‐energy electron beam (E‐Beam) curing for carbon fiber‐reinforced polymer composite, prepregs undergoes 3 sequenced curing processes, namely E‐Beam‐induced curing, postray curing after irradiation, and thermally induced curing. In this study, the irradiation dose rate (IDR) is demonstrated to be influential on the redistribution of the curing portions in the 3 curing stages and directly influences the interlaminar bonding quality of the stepwise cured laminates. Differential scanning calorimetry results showed that higher IDR resulted in higher temperature of irradiated prepregs, and hence, a higher degree of curing was induced by the E‐Beam within a dose range of 0 to 500 kGy as compared to lower IDRs, which decreased the interlaminar physical adhesive quality between layers. Analysis indicates that other than pure physical adhesion between uncured layers, postray curing can further enhance the interlaminar shear strength for cured laminates by introducing cross‐layer chemical bonding in the interlaminar zone.  相似文献   

6.
The effect of filler types of mica and talc on the oscillatory shear rheological properties, mechanical performance, and morphology of the chemically coupled polypropylene composites is studied in this work. The Maleic Anhydride grafted Polypropylene (MAPP) was used as an adhesion promoter for coupling mineral particles with the polypropylene matrix. The samples were prepared by a co‐rotating, L/D = 40, 25 mm twin screw extruder. The tensile tests carried out on the injection molded samples showed a reinforcing effect of talc up to 20 wt% on the Polypropylene (PP). The tensile strength of PP‐mica composites showed a slight decrease at all percentages of mica. The effect of chemical coupling by using MAPP on the tensile strength was more pronounced in increasing the tensile strength for PP‐mica than PP‐talc composites. The complex viscosity curve of pure PP and the composites, showed a Newtonian plateau (η0) up to 30 wt% at low frequency terminal zone. By increasing the filler content to 40 and 50 wt%, the complex viscosity at very low shear rates sharply increased and showed yield behavior that can be due to the formation of filler particles networks in the melt. At the optimum amount of coupling agent, a minimum in cross over frequency curve against MAPP content is observed. The optimum amount of coupling agent for PP‐talc composites is about 1.5%, and about 3% for PP‐mica formulations. The analysis of viscosity behavior at power‐law high region, revealed the more shear thinning effect of mica than talc on the PP matrix resin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The Xidatan rock series consist of mylonite, gneiss and granite. The U-Pb age showsthat the granite was formed at 206 Ma, and the ~(40)Ar/~(39)Ar ages of the biotite display that the my-lonite was formed at 145 Ma when the Xidatan ductile shear zone occurred. At about 110-100 Mathe Xidatan Fault reactivated again. As a result, the biotite and muscovite of Xidatan rock seriesopened their argon isotope system.  相似文献   

8.
Non‐Newtonian fluids are ubiquitous in daily life and industrial applications. Herein, we report an intelligent fluidic system integrating two distinct non‐Newtonian rheological properties mediated by an autocatalytic enzyme reaction. Associative polyelectrolytes bearing a small amount of ionic and alkyl groups are engineered: by carefully balancing the charge density and the hydrophobic effect, the polymer solutions demonstrate a unique shear thickening property at low pH while shear thinning at high pH. The urea‐urease clock reaction is utilized to program a feedback‐induced pH change, leading to a strong upturn of the nonlinear viscoelastic properties. As long as the chemical fuel is supplied, two distinct non‐Newtonian states can be achieved with a tunable lifetime span. As a proof of concept, we demonstrate how the physical energy‐driven nonequilibrium properties can be manipulated by a chemical‐fueled process.  相似文献   

9.
The stabilization and growth of a non‐native structure, hexagonal wurtzite MnO (h‐MnO), is explored via kinetic control of manganese precursor on a carbon sphere template. MnO is most stable in the cubic rock‐salt structure (c‐MnO), and a number of studies have focused on the synthesis and properties of this rock‐salt phase. However, h‐MnO has not been fully characterized before our work. Prolonged heating at a relatively low temperature yields c‐MnO, whereas rapid heating of the reaction mixture at reflux produces h‐MnO in the presence of carbon spheres. The effect of benzyl amine concentration on the formation of two different oxidation states (c‐MnO and t‐Mn3O4) was examined as well. Moreover, the structural stability of the manganese oxides and phase transition of MnO in terms of the wurtzite to rock‐salt structural transformation have been investigated.  相似文献   

10.
采用A/B/S三元共混体系为模型体系,其中S由A和B通过可逆的化学反应生成并充当增容剂.我们采用自由能形式的格子玻尔兹曼模拟方法,考察了在稳态及振荡剪切流动下化学反应速率、剪切速率和振荡频率对体系形态结构演化的影响.模拟给出了增容剂平均密度和空间分布随时间的演化,结果表明增容剂S的生成能有效地降低分散相的尺寸,并且通过控制化学反应速率、剪切速率和振荡频率能够有效地调控增容剂在体系中的分布,从而为控制反应共混体系的形态结构提供帮助.  相似文献   

11.
For the improved dispersion of montmorillonite (MMT) in a polypropylene (PP) matrix, PP/MMT nanocomposites prepared via direct melt intercalation were further subjected to oscillating stress achieved by dynamic packing injection molding. The shear‐induced morphological changes were investigated with an Instron machine, wide‐angle X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The original nanocomposites possessed a partly intercalated and partly exfoliated morphology. A transformation of the intercalated structure into an exfoliated structure occurred after shearing, and a more homogeneous dispersion of MMT in the PP matrix was obtained. However, the increase of the exfoliated structure was accompanied by the scarifying of the orientation of MMT layers along the shear direction. Some bended or curved MMT layers were found for the first time by TEM after shearing. However, the orientation of PP chains in the PP/MMT nanocomposites became very difficult under an external shear force; this indicated that the molecular motion of PP chains intercalated between MMT layers was highly confined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1–10, 2003  相似文献   

12.
Particle‐dispersed melting is a complex but important melting mechanism in the corotating twin‐screw extruder. In this study, the complex multi‐particle‐dispersed system was simplified into a single‐particle melting model. The finite‐difference method was introduced to solve this problem. The simulation results show that the melting of a particle may involve two steps: the heating stage and melting stage. The heating time and melting time depend on solid concentration, initial melt and solid temperature, and shear rate. Calculations indicate that high solid concentration and solid temperature, low melt temperature and shear rate will result in a more uniform temperature distribution after polymer melting. The model offers valuable information for designing the melting zone in a corotating twin‐screw extruder, especially at high screw speed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2461–2468, 2001  相似文献   

13.
Superelastic materials (crystal‐to‐crystal transformation pseudo elasticity) that consist of organic components have not been observed since superelasticity was discovered in a Au‐Cd alloy in 1932. Superelastic materials have been exclusively developed in metallic or inorganic covalent solids, as represented by Ti‐Ni alloys. Organosuperelasticity is now revealed in a pure organic crystal of terephthalamide, which precisely produces a large motion with high repetition and high energy storage efficiency. This process is driven by a small shear stress owing to the low density of strain energy related to the low lattice energy.  相似文献   

14.
Superelastic materials (crystal‐to‐crystal transformation pseudo elasticity) that consist of organic components have not been observed since superelasticity was discovered in a Au‐Cd alloy in 1932. Superelastic materials have been exclusively developed in metallic or inorganic covalent solids, as represented by Ti‐Ni alloys. Organosuperelasticity is now revealed in a pure organic crystal of terephthalamide, which precisely produces a large motion with high repetition and high energy storage efficiency. This process is driven by a small shear stress owing to the low density of strain energy related to the low lattice energy.  相似文献   

15.
Layered materials are of high importance because of their anisotropy and as a source of 2D materials. Whilst there is a plethora of multi‐elemental 2D materials, the number mono‐elemental 2D materials is rather limited. Herein, we demonstrate that aqueous shear exfoliation can be used to obtain As, Sb, and Bi exfoliated nanosheets. Morphological and chemical characterization of the exfoliated materials shows a decrease in thickness, sheet‐to‐nanosheet scale, and partial oxidation owing to a higher surface area. The electrochemical performance is tested in terms of inherent electrochemistry, electron transfer, and sensing applications as demonstrated with ascorbic acid. Potential energy‐related applications are evaluated in the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR), with shear‐exfoliated Sb having the best electrochemical performance overall. These findings will have a profound impact on the preparation and application of 2D mono‐elemental materials.  相似文献   

16.
Interfacial adhesion between the fiber and the matrix in a composite is a primary factor for stress transfer from the matrix to the fiber. In this study, oxygen plasma treatment method was applied to modify the fiber surface for improving interfacial adhesion of aramid fiber‐reinforced poly(phthalazinone ether sulfone ketone) (PPESK) composite. Composite interfacial adhesion properties were determined by interlaminar shear strength (ILSS) using a short‐beam bending test. The composite interfacial adhesion mechanism was discussed by SEM. The changes of chemical composition and wettability for plasma‐treated fiber surfaces stored in air as long as 10 days were investigated by XPS and dynamic contact angle analysis (DCAA), respectively. Results indicated that oxygen plasma treatment was an effective method for improving interfacial adhesion; plasma‐treated fiber surface suffered aging effects during storage in air. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The transformation of MoO3 induced by electron beam irradiation was studied by electron energy‐loss spectroscopy (EELS) in combination with electron diffraction and high‐resolution transmission electron microscopy (HRTEM) techniques. The routes of structure transformation were dependent on the applied electron current density. In case of low current density, MoO2 was obtained. In case of high current density, MoO with a rock‐salt structure is suggested to be the final phase. The change in oxidation states of the Mo oxides was deduced from the features in energy‐loss near edge structure (ELNES) of the O K‐edge. Quantitative analysis was successfully employed on Mo M3‐edge and O K‐edge to obtain the O/Mo ratio of the reduced phases. The mechanisms of different structure transformation behaviors were suggested in the frame of radiolysis enhanced diffusion.  相似文献   

18.
Layered materials are of high importance because of their anisotropy and as a source of 2D materials. Whilst there is a plethora of multi‐elemental 2D materials, the number mono‐elemental 2D materials is rather limited. Herein, we demonstrate that aqueous shear exfoliation can be used to obtain As, Sb, and Bi exfoliated nanosheets. Morphological and chemical characterization of the exfoliated materials shows a decrease in thickness, sheet‐to‐nanosheet scale, and partial oxidation owing to a higher surface area. The electrochemical performance is tested in terms of inherent electrochemistry, electron transfer, and sensing applications as demonstrated with ascorbic acid. Potential energy‐related applications are evaluated in the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR), with shear‐exfoliated Sb having the best electrochemical performance overall. These findings will have a profound impact on the preparation and application of 2D mono‐elemental materials.  相似文献   

19.
The microbial production of 1,3‐propanediol is a success story for modern biotechnology. Once a specialty chemical, 1,3‐propanediol has risen to a bulk chemical within a few years. The interest in 1,3‐propanediol as a new commodity chemical is due to its use as a starting material for novel polymers with excellent physical and chemical properties. With the introduction of a new biotechnological production process, 1,3‐propanediol can be made at a competitive price from renewable resources with the aid of genetically modified E. coli bacteria. The development of the recombinant E. coli strain took more than 7 years and 36 genes had to be altered in order to enable the production of 1,3‐propanediol. In addition, the transformation of glycerol to 1,3‐propanediol could be the solution for the gycerol problem of biodiesel production.  相似文献   

20.
Advantages of the analysis of the topology of the electron localization function (ELF) in the characterization of the chemical bonding in solids are illustrated in the study of the zinc blende --> rock salt transformation in BeO. The 4-fold to 6-fold coordination change is described as a two-step process: first, a catastrophic-like emergence of two new Be-O bonds reveals the onset of the rock salt structure, and second, the new interactions gradationally evolve to achieve the bonding network of the high-pressure phase. The increase in coordination, the volume collapse and the enhancement in the bulk modulus across the transition pathway are qualitatively and quantitatively traced back to the oxygen's valence shell. Although several ELF indexes point toward the expected greater bond polarity in the B3 than in the B1 structure, it can be concluded that there is no substantial modification in the nature of the crystal interactions induced by the phase transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号