首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a numerical investigation of breakup modes of an axisymmetric, laminar compound jet of immiscible fluids, which flows in a coflowing immiscible outer fluid. We use a front-tracking/finite difference method to track the unsteady evolution and breakup of the compound jet, which is governed by the Navier–Stokes equations for incompressible Newtonian fluids. Numerical results show that depending on parameters such as the Reynolds number Re (in the range of 5–30) and Weber Number We (in the range of 0.1–0.7), based on the inner jet radius and inner fluid properties, the compound jet can break up into drops in various modes: inner dripping–outer dripping (dripping), inner jetting–outer jetting (jetting), and mixed dripping–jetting. Decreasing Re or increasing We promotes the jetting mode. The transition from dripping to jetting is also strongly affected by the velocity ratios, U21 (intermediate to inner velocities) and U31 (outer to inner velocities). Increasing U21 makes the inner jet thinner and stretches the outer jet and thus promotes jetting. In contrast, increasing U31 thins the outer jet, and thus, when the inner jet is dripping, the outer jet can break up into drops in the mixed dripping–jetting mode. Continuously increasing U31 results in thinning both inner and outer jets and thus produces small drops in the jetting mode. In addition, starting from dripping, a decrease in the interfacial tension ratio of the outer to inner interfaces results in the mixed dripping–jetting and jetting modes. These modes produce various types of drops: simple drops, and compound drops with a single inner drop (single-core compound drops) or a few inner drops (multi-core compound drops).  相似文献   

2.
Experimental studies attempting to ascertain the influence of viscoelasticity on the atomization of polymer solution are often hindered by the inability to decouple the effect of shear thinning from the effect of extensional hardening. Here, the influence of viscoelasticity on the jet break up of a series of non-shear-thinning viscoelastic fluids is quantified. Previous characterization using an opposed-nozzle rheometer identified the critical extensional rates for strain hardening of these model fluids. The strain hardening fluids exhibit a beads-on-string structure with reduction or elimination of satellite drops. Capillary instabilities grow on the filaments connecting the spheres and eventually break the filaments up into a string of very small drops about one order of magnitude smaller than the satellite drops formed by a Newtonian fluid with the same shear viscosity, surface tension, and density. These results confirm that strain hardening is the key rheological property in jet break up and that the critical extensional rate of a fluid is pertinent in determining the final characteristics of break up. Results suggest that the opposed-nozzle rheometer does probe extensional behavior in the range of extensional rates that are relevant to jet break up, providing a tool to roughly predict jet break up.  相似文献   

3.
We experimentally determine the droplet production rate at a water surface where either single or multiple bubbles (bubbly flow) with similar mean diameters disintegrate and produce film and jet droplets. A detailed assessment of film drop production from bubbly flow is important, since most presently used correlations are based on single-bubble measurements. Moreover, jet drops––even though they contain a much larger fluid volume––are de-entrained into the water surface in most technical and geophysical applications. Detailed phase Doppler anemometry (PDA) measurements are performed in the vicinity of the water surface with long sampling times. For a considered mean diameter of approximately 3 mm, the size distribution of the non spherical bubbles is determined from photographic images. From single-bubble measurements we find, consistent with literature data, a narrow size distribution of the jet drops with a mean diameter of 477 μm. For bubbly flow, the maximum is shifted to somewhat smaller jet drop diameters (425 μm) and the production of film droplets increases significantly. We relate this increase to the coalescence of bubbles prior to their disintegration at the surface. Our results therefore show that for a fixed bubble size and gas flow rate the number of film drops entrained from a bubbly flow is underestimated, if the estimate is based on single-bubble data.  相似文献   

4.
高压液体通过喷嘴加速,形成高速射流,与相反方向的另一股射流相互撞击,发生强烈的相互作用,产生强烈的径向和轴向湍流速度分量以及狭窄的高压高速湍流区,在此区域内,相间或液滴间的碰撞互磨产生的挤压力和剪切力使流体被细化。本文从液体连续相撞击流的两个特征:微观混合和压力波动入手,逐一分析了撞击速度与微观混合、压力波动的关系,得出了压力波动与撞击流速度乱U0成正比关系,微观混合与U^3 0成正比的规律。同时,用流体模拟软件Fluent对喷嘴的结构和尺寸进行优化,并得出最合理的喷嘴结构和尺寸。模拟认为:在相同压力下,采用矩形槽,出口孔径为0.2mm,槽的深度为0.27mm的结构时撞击速度达到最大,并通过实验验证了这一结论。  相似文献   

5.
The stability of a surface-charged cylindrical jet in a longitudinal uniform electric field with respect to capillary pertubations is investigated in the linear approximation. The evolution of both axisymmetric and azimuthal-periodic perturbations is analyzed. In the latter case the first two modes among the azimuthal wavenumbers — bending and Bohr — are considered. Axisymmetric and bending instabilities lead to the transverse disintegration of the jet into individual drops and the Bohr mode to the longitudinal separation of the input jet into two parts. It is found that the axisymmetric and bending instabilities, respectively, can be completely suppressed and significantly attenuated by means of an external longitudinal field. In this case the role of the Bohr mode becomes more important leading under certain conditions to longitudinal longwave jet splitting. Events which can be interpreted as manifestations of longitudinal partition of the jet (dumbbell-like cross-section, branching nodes) are observed in experiments with evaporating polymer-solution microjets. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 29–40, March–April, 1998. The work was carried out with support from the Russian Foundation for Fundamental Research (project No. 97-01-00153).  相似文献   

6.
The instability of an axisymmetric viscous liquid jet in a gas or in a vacuum is examined using the interface formation theory. This model allows for variable surface tension at constant temperature, generalising the classical continuum formulation by using irreversible thermodynamics. Steady-state solutions are determined and found to be unstable to a travelling wave that propagates down the liquid jet, causing the jet to break-up into drops. The linear instability results are compared to those of the classical formulation. These are especially found to differ when the jets are on the micron scale. This will give rise to significantly revised predictions in some parameter ranges for the break-up length and droplet sizes produced by microjets. Comparisons with molecular dynamics simulations are also presented, with encouraging results. Finally, the dependence of the results on the initial conditions is discussed. PACS 68.03.Cd  相似文献   

7.
Results of experimental investigation of the problem of active control of the charge acquired by a body (sphere) in flow with an electrically charged component (ions) and electrically charged dispersed phase (water drops) are obtained and analyzed. This situation is not uncommon during aircraft flight in a cloud front. Previous experimental studies have mainly considered flows without a dispersed phase. The required flow was created by introducing in a turbulent air-steam jet a corona discharge on whose ions “electric” condensation developed and on the growing drops that arose a charge was accumulated due to diffusion processes and directional ion motion in the electric field. On the sphere which was introduced in the charged jet a discharger (active compensator) with an autonomous high-voltage power source creating a potential difference between the discharger corona needle insulated from the body and the body surface was mounted. Measurements of the size and concentration of the drops ahead of the critical point of the sphere were performed. The electric currents to elements of the experimental electric system and the floating potential of the body were measured for various corona charge parameters and various voltages on the active compensator. An active control of the sphere charge, its complete removal and the recharge of the sphere, is realized.  相似文献   

8.
When there is a drop impact on a liquid surface, two phenomena can appear depending on the impact Weber number: either vortex generation or jet formation; in this paper the second behavior is dealt with. Based on the comparison of experimental and theoretical results, the dynamic of splashing drops on deep liquid surfaces is analyzed; this work focuses on the crater's evolution and its maximum. The liquids used are water and ethyl-alcohol. Drop impacts are made with various impact velocities by creating drops from several heights above the liquid surface. A straightforward model to describe and predict the crater's sinking evolution is proposed and agrees well with the experimental results over a range of Weber numbers from 50 to 1500. To cite this article: D. Brutin, C. R. Mecanique 331 (2003).  相似文献   

9.
The interaction of an electrically charged liquid-drop dispersed phase with a turbulent air-steam jet in a "water drop generator (capillary)-jettarget" system is investigated. The experimental conditions were as follows: volume flow of water through the capillary 0.01 cm3/s. capillary inside diameter 0.8 mm, electric potential applied to the capillary 20 kV. When the electric field is absent, condensation does not develop in the jet despite the existence of oversaturation zones. Two regimes of interaction between the charged dispersed phase and the jet are detected. The first regime (for ϕ<8 kV) is characterized by the regular launching of fairly large charged drops (0.5<r<2 mm) from the capillary and the absence of condensation in thejet. As the potential ϕ increases, the drop size decreases, whereas the drop charge increases. This regime made it possible to model the motion of individual charged clusters of different charge and size in aircraft engine jets. The second regime (ϕ>8 kV) is characterized by the irregular launching of drops from the capillary, drop dispersion with respect to size, a sharp increase in the target current, and the sudden appearance of condensation in the air-steam jet. The possible electrohydrodynamic and heterophase processes are qualitatively analyzed. Moscow, e-mail: vatazhin@ciam.ru.likhter@ciam.ru. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 102–114, July–August, 2000. The work received financial support from the Russian Foundation for Basic Research (project No. 99-01-00983).  相似文献   

10.
Condensation in axisymmetric turbulent air-steam jets is studied theoretically and experimentally under bench experiment conditions in which a hot mist jet is injected from a nozzle into air. On the basis of the physico-mathematical model developed, four problems are considered: homogeneous condensation in the jet at a fairly low ambient air temperature, heterogeneous condensation on particles introduced into the jet at the nozzle outlet, heterogeneous condensation on particles ejected into the jet from the surrounding space, and condensation on ions entering the jet from a corona point on the flow axis. The local characteristics of the dispersed phase (mean particle size, standard deviation of the particle size, particle number and volume concentrations) and its integral characteristics (coefficient of vapor conversion into condensed phase and the optical thickness of the jet in different sections) are determined. The calculation results are compared with experimental data. As an application of the model developed, the characteristics of heterogeneous condensation in the jets of certain modern aircraft engines (IL-96-300, Tu-204, MiG-29, Boeing-707) are found on the assumption that the condensation occurs on particles entering the jet at the nozzle outlet and the particle growth rate in all stages (including the initial stage of particle irrigation) coincides with the growth rate of liquid drops.  相似文献   

11.
The flow of an axially symmetric capillary jet of a viscous incompressible liquid in the space occupied by another liquid is investigated. The problem of stationary flow in the jet and in the surrounding medium under the action of viscosity, capillary forces, and gravity was obtained numerically. The instability problem of this flow to small perturbations in the form of running waves is stated and solved numerically. The values of the dimensionless Reynolds, Weber, and Froude numbers are explained, as well as the effect of the initial velocity profile in the jet, its instability, and subsequent jet decay into drops.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 50–59, November–December, 1978.  相似文献   

12.
We employ detailed numerical simulations to understand the physical mechanism underlying the surface breakup of a non-turbulent liquid jet injected transversely into a high pressure gaseous crossflow under isothermal conditions. The numerical observations reveal the existence of shear instability on the jet periphery as the primary destabilization mechanism. The temporal growth of such azimuthal instabilities leads to the formation of interface corrugations, which are eventually sheared off of the jet surface as sheet-like structures. The sheets next undergo disintegration into ligaments and drops during the surface breakup process. The proposed instability mechanism is inherently an inviscid mechanism, contrary to the previously suggested mechanism of surface breakup (known as “boundary layer stripping”), which is relied on a viscous interpretation. The numerically obtained length and time scales of the shear instabilities on the jet laterals are compared with the results of Behzad et al. (2015) on temporal linear stability analyses of a jet in crossflow at near the nozzle. The stability characteristics of the most amplified modes (i.e., the wavenumber and the corresponding growth rate) obtained from the numerical simulations and the stability analyses are in good agreement.  相似文献   

13.
The behavior of glycerin–water jets flowing into immiscible ambients of Dow Corning 200 fluid was investigated using laser induced fluorescence (LIF). Undistorted images were obtained by matching the index of refraction of the fluids. A sinusoidal perturbation was superposed on the flow to phase lock the drop formation. The forcing frequency dramatically affected the size, spacing, and number of drops that formed within a forcing cycle and the angle between drops and the jet interface just before pinch-off. Two fluid combinations were studied with similar density ratios, but viscosity ratios differing by a factor of 20. The viscosity ratio affected the jet stability as well as pinch-off angles and drop size. Received: 28 January 1999/Accepted: 20 January 2000  相似文献   

14.
The paper is dealing with a research carried out at the Institute of Thermal-Fluid Dynamics to investigate the rewetting of a hot surface. The rewetting of the hot surface by spray cooling has been analyzed in previous works. After the droplet impingement, the liquid film falls along the surface, and rewetting by falling film takes place. The experiment was characterized by a 1-dimensional liquid spray, i.e., drops having a uniform, constant diameter, impinging on the heated surface. The cooling rate of the hot surface has been detected as a function of wall temperature, drop diameter and velocity, and impact point of the spray. The working feature of the spray is based on the varicose rupture of the liquid jet: imposing a periodic (symmetrical) perturbation with appropriate amplitude and frequency on the jet surface, the flow is “constrained” to break soon after leaving the nozzle, eventually obtaining constant diameter drops, depending on the nozzle diameter and liquid velocity. In this paper, previous results with spray cooling are compared with experimental runs in which the spray injection is replaced with a falling film all along the test section. The rewetting velocity has been calculated from the response of the thermocouples placed on the heated wall and using a digital image system based on the video image registered during the runs.  相似文献   

15.
Mathematical models are considered and calculations made for flows in turbulent isobaric steam—air jets in the presence of condensation of the water vapor they contain. The models consist of gasdynamic equations for a turbulent jet, equations for a differential two-parameter model of turbulence, thermodynamic relations, and kinetic equations. A study is made of steam—air jets in a regime of condensation in equilibrium, when the flow region is broken down into zones of frozen flow and flow in equilibrium, described by the equations for a turbulent jet with the use of the traditional thermodynamic relations and of the thermodynamic relations for condensation in equilibrium. An analysis is made of the influence of pulsating motion on the kinetic parameters: rate of nucleation, the critical size of the nuclei, and rate of growth of the drops. It is shown that the rate of nucleation, determined from a quasilaminar averaging model, is several orders of magnitude less than the mean value obtained by averaging using the density distribution of the passive admixture concentration probability. A numerical study is made of the heterogeneous condensation in turbulent jets on extraneous particles entering from the nozzle. Kinetic equations are written down for the case when the rate of growth of the drops does not depend on their radius. A study is made of the dynamics of the transition of heterogeneous condensation from disequilibrium to equilibriumTranslated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 59–67, January–February, 1985.  相似文献   

16.
17.
An experimental study of the interaction and coalescence of viscous drops moving through a cylindrical capillary tube under low Reynolds number conditions is presented. The combined pressure- and buoyancy-driven motion of drops in a Newtonian continuous phase is examined. The interaction between two drops is quantified using image analysis, and measurements of the coalescence time are reported for various drop size ratios, Bond numbers, and viscosity ratios. The time scale for coalescence in the non-axisymmetric configuration is found to be substantially larger than that for coalescence in the axisymmetric configuration. Measurements of the radius of the liquid film formed between the two drops at the instant of apparent contact are used in conjunction with a planar film drainage model to predict the dependence of the coalescence time on drop size ratio for coalescence of low viscosity-ratio drops in the axisymmetric configuration.  相似文献   

18.
Capillary instability of a fluid jet is one of the classical problems of hydrodynamics [1]. Studying it is of practical interest, particularly for the optimization of the ignition of a liquid propellant and the development of granulating apparatus in the chemical industry [2]. Until recently, the main attention has been paid to analyzing linear problems. Dispersion equations have been obtained for small perturbations of a jet surface with the viscosity of the external medium taken into account [3]. The construction of a theory of finite-amplitude waves on an ideal fluid jet surface was started in [4, 5]. Up to now this theory has achieved substantial results, as can be assessed by the successful numerical modeling of the dissociation of an inviscid fluid jet into drops [6] (see [7, 8] also). This paper is devoted to a discussion of the nonlinear development stage of viscous fluid jet instability under conditions allowing the influence of the surrounding medium and the gravity field to be neglected.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 179–182, March–April, 1977.The author is grateful to B. M. Konyukhov and G. D. Kuvatov for suggesting this problem and performing the experiment and to M. I. Rabinovich for useful discussions.  相似文献   

19.
The coalescence of two identical viscous-liquid drops in weightlessness under the action of surface tension is considered. Inside the drops, the flow is described by the Navier-Stokes and Poisson (for the pressure) equations. On the liquid free surface in contact with the medium at rest, the dynamic and kinematic conditions are used. The problem is solved by a finite-difference method. The coalescence of the drops and the subsequent oscillations of the resultant drop are investigated. The results are compared with the known data.  相似文献   

20.
The motion of a three-dimensional deformable drop between two parallel plane walls in a low-Reynolds-number Poiseuille flow is examined using a boundary-integral algorithm that employs the Green’s function for the domain between two infinite plane walls, which incorporates the wall effects without discretization of the walls. We have developed an economical calculation scheme that allows long-time dynamical simulations, so that both transient and steady-state shapes and velocities are obtained. Results are presented for neutrally buoyant drops having various viscosity, size, deformability, and channel position. For nearly spherical drops, the decrease in translational velocity relative to the undisturbed fluid velocity at the drop center increases with drop size, proximity of the drop to one or both walls, and drop-to-medium viscosity ratio. When deformable drops are initially placed off the centerline of flow, lateral migration towards the channel center is observed, where the drops obtain steady shapes and translational velocities for subcritical capillary numbers. With increasing capillary number, the drops become more deformed and have larger steady velocities due to larger drop-to-wall clearances. Non-monotonic behavior for the lateral migration velocities with increasing viscosity ratio is observed. Simulation results for large drops with non-deformed spherical diameters exceeding the channel height are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号