首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The structural and magnetic properties of Nd0.5−xPrxSr0.5MnO3 (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) system have been investigated. With the substitution of Pr in Nd0.5Sr0.5MnO3, it shows a gradual structure transformation from the Imma orthorhombic symmetry to the tetragonal I4/mcm phase, and the crystallographic transition remains incomplete, even in Pr0.5Sr0.5MnO3. A large bifurcation between zero-field-cooled (ZFC) and field-cooled (FC) susceptibility has been observed below Curie temperature (TC), which is characteristic of coexistence of ferromagnetism (FM) and antiferromagnetism (AFM) at low temperature region. The magnetization of Pr0.5Sr0.5MnO3 is larger than that of Nd0.5Sr0.5MnO3, while Nd0.5Sr0.5MnO3 with more CE-type AFM shows larger magnetization than Nd0.3Pr0.2Sr0.5MnO3, which mixed with CE-type (majority) and A-type (minority) AFM at low temperature, indicating that the magnetization of Nd0.5−xPrxSr0.5MnO3 system is affected by A-site disorder combined with orbital ordering of A-type AFM and CE-type AFM.  相似文献   

2.
Prabir Pal  M.K. Dalai  I. Ulfat 《Surface science》2011,605(9-10):875-877
The valence band electronic structure of Pr0.5Sr0.5MnO3 has been investigated across its paramagnetic metallic (PMM)–ferromagnetic metallic (FMM)–antiferromagnetic insulator (AFMI) transition. Using surface sensitive high resolution photoemission we have conclusively demonstrated the presence of a pseudogap of magnitude 80 meV in the near Fermi level electronic spectrum in the PMM and FMM phases and finite intensity at the Fermi level in the charge ordering (CO)-AFMI phase. The pseudogap behavior is explained in terms of the strong electron–phonon interaction and the formation of Jahn Teller (JT) polarons, indicating the charge localizations. The finite intensity at the Fermi level in the insulating phase showed a lack of charge ordering in the surface of the Pr0.5Sr0.5MnO3 samples.  相似文献   

3.
In this study, we investigated the lattice structure, electrical resistivity, and optical conductivity of Nd0.5Sr0.5MnO3 thin films grown on SrTiO3 (001) and SrTiO3 (011) substrates. The thin film on SrTiO3 (001) experiences isotropic tensile strain and shows characteristics of the semiconducting ground state. On the other hand, the thin film on SrTiO3 (011) experiences anisotropic tensile strain, which means that one of the two in-plane lattice axes is fixed by the substrate lattice and the other axis is relaxed. The thin film shows the insulator–metal phase transition at 220 K and characteristics of the charge-ordered insulating ground state below 150 K. By comparing the single crystal data of the lattice along with the resistivity and optical conductivity, we suggest that the substrate strain affects the electronic structure as well as the carrier dynamics of the Nd0.5Sr0.5MnO3 thin films. We propose the possible ground states formed in the thin films.  相似文献   

4.
We present results of an electron paramagnetic resonance (EPR) study of Nd1−xSrxMnO3 with x=0.5 across the paramagnetic to ferromagnetic, insulator to metal transition at 260 K (Tc) and the antiferromagnetic, charge ordering transition (TN=Tco) at 150 K. The results are compared with those on Nd0.45Sr0.55MnO3 which undergoes a transition to a homogeneous A-type antiferromagnetic phase at TN=230 K and on La0.77Ca0.23MnO3 which undergoes a transition to coexisting ferromagnetic metallic and ferromagnetic insulating phases. For x=0.5, the EPR signals below Tc consist of two Lorentzian components attributable to the coexistence of two phases. From the analysis of the temperature dependence of the resonant fields and intensities, we conclude that in the mixed phase ferromagnetic and A-type antiferromagnetic (AFM) phases coexist. The x=0.55 compound shows a single Lorentzian throughout the temperature range. The signal persists for a few degrees below TN. The behaviour of the A-type AFM phase is contrasted with that of the two ferromagnetic phases present in La0.77Ca0.23MnO3. The comparison of behaviour of A-type AFM signal observed in both Nd0.5Sr0.5MnO3 and Nd0.45Sr0.55MnO3 with the two FM phases of La0.77Ca0.23MnO3, vis-à-vis the shift of resonances with respect to the paramagnetic phases and the behaviour of EPR intensity as a function of temperature conclusively prove that the Nd0.5Sr0.5MnO3 undergoes phase separation into A-type AFM and FM phases.  相似文献   

5.
Temperature dependences (77–300 K) of the thermal capacity, diffusion, and conductivity are investigated for the Nd 0.5 Sr 0.5 MnO 3 and Nd 0.55 Sr 0.45 MnO 3 polycrystalline samples. The examined characteristics show anomalous behavior in the magnetic phase transition and transition to the charge-ordered state. It is demonstrated that the main reason for a sharp decrease in the thermal conductivity during Nd 0.5 Sr 0.5 MnO 3 transition into the antiferromagnetic charge-ordered state is a change in the phonon spectrum caused by the lattice compression. A temperature dependence of the free phonon path is calculated for the examined temperature interval based on the thermal diffusion obtained and the literature data on the sound propagation velocity. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 72–75, April, 2007.  相似文献   

6.
Results of neutron diffraction studies of R0.5Sr0.5MnO3 manganites (R = Sm, Nd0.772Tb0.228, and Nd0.544Tb0.456) performed to reveal the microscopic origins of the giant oxygen isotope effect recently discovered in Sm0.5Sr0.5MnO3 are presented. It is shown that two crystalline phases differing in the type of Jahn-Teller distortions of oxygen octahedra and in the type of magnetic ordering coexist at low temperatures in all the studied compositions. A scenario for the observed phase transitions is suggested based on the diffraction data. It is found that the percolation transition from the metallic to insulating state in compositions with Sm upon substitution of 18O for 16O is associated with a sharp (from 65 to 13%) decrease in the volume of the ferromagnetic metallic phase.  相似文献   

7.
The results of structural neutron experiments on determining crystal and magnetic phase states of perovskite-like manganites R0.5Sr0.5MnO3 (R = 152Sm, Nd0.772Tb0.228, and Nd0.544Tb0.456) are reported. Experiments are carried out for revealing microscopic factors responsible for the giant oxygen isotope effect that was discovered recently in Sm1?x Sr x MnO3 for x ≈ 0.5. It is shown that separation into two crystal phases P 1 and P 2 with the same spatial symmetry but different types of Jahn-Teller distortions in MnO6 octahedra and magnetic ordering of Mn atoms takes place in all studied compounds at low temperatures. Structural analysis has been carried out successfully owing to exceptionally large differences in the unit cell parameters of the coexisting phases. The P 1 phase is ferromagnetic and MnO6 octahedra are distorted only slightly. The P 2 phase is antiferromagnetic (A-type ordering) and MnO6 octahedra are strongly compressed in the apical direction. The relative volumes occupied by the P 1 and P 2 phases depend on the mean radius of the A cation, and the replacement of 16O by 18O results in their redistribution in favor of the P 2 phase. The results unambiguously point to the percolation nature of the metal-insulator transition in a Sm-containing compound upon isotopic substitution of oxygen due to a sharp decrease (from 65 to 13%) in the fraction of ferromagnetic phase P 1. In all investigated compounds, the ordered magnetic moment of manganese Mn in the P 1 and P 2 phases varies from 1.7μB to 3.5μB. The data on the evolution of the miscrostructure parameters during a phase transition to the stratified state indicate that the initial spread in the A cation radii, as well as the internal microstrains, produce a critical effect on the formation of mesoscopic phase separation.  相似文献   

8.
The phenomenon of destabilization of antiferromagnetic insulating state into a ferromagnetic metallic one in Nd0.5Sr0.5MnO3 with the variation of particle/grain size is critically investigated. Based on our neutron diffraction study, magnetic and transport experiments, we observe ferromagnetism and metallic behavior in Nd0.5Sr0.5MnO3 (∼40 nm grain size) as against A-type antiferromagnetic order in the sample with the largest grain size (∼800 nm). The latter shows a systematic change in the lattice parameters with temperature, and an antiferromagnetic ground state similar to that of a bulk system. Interestingly, the sample with the smallest grain sizes exhibits insignificant structural changes (compared to the largest grain size sample) but a complete change in the magnetic state (ferromagnetic behavior) as revealed from the neutron diffraction study. Magnetic measurements also confirm a ferromagnetic state in the small-grained sample. Electronic transport measurements exhibit a metal-insulator transition in this sample. The effects are primarily attributed to enhanced surface disorder.  相似文献   

9.
We have made in situ optical microscope observation for the microstructure control driven by magnetic field in Fe-31.2Pd (at%), CoO and Nd0.5Sr0.5MnO3. These materials exhibit structural transitions, and their low-temperature phases are composed of several crystallographic domains (variants), which are separated by twinning planes. In the case of ferromagnetic Fe-31.2Pd and antiferromagnetic CoO, the magnetic field promotes the twinning plane movement. This movement gives a large strain of several percent and is essentially explained by the fact that the magnetic shear stress, which corresponds to the magnetic anisotropy energy divided by the twinning shear, is larger than the twinning stress. In the case of Nd0.5Sr0.5MnO3, the twinned microstructure of the charge-ordered phase disappears under a magnetic field in association with the melting of the charge-ordered phase.  相似文献   

10.
研究了半掺杂相分离锰氧化物Eu0.5Sr0.5MnO3样品的结构和电磁输运特性.在半掺杂情况下,该样品呈O′型正交结构,表明样品存在典型的Jahn-Teller畸变;在75 K附近样品的顺磁/反铁磁背景中开始出现铁磁相,在更低的温度42 K,4000 A/m磁场下M-T的场冷曲线和零场冷曲线出现明显分岔,样品的交流磁化率实部随温度的变化曲线中也在42 K观察到尖峰的出现,表现出团簇玻璃行为.在无外加磁场下该样品在 关键词: 多相竞争 半掺杂 铁磁团簇  相似文献   

11.
A decrease in the oxygen content in Nd0.5Ca0.5MnO3?δ down to γ≤0.12 is shown to bring about a strong decrease in the magnetic field inducing a transition from the antiferromagnetic charge-ordered to the ferromagnetic charge-disordered state. The ferromagnetic phase in a Nd0.5Ca0.5MnO2.92 sample is stable in the absence of an external magnetic field. A further increase in the content of oxygen vacancies stabilizes the antiferromagnetic charge-disordered state.  相似文献   

12.
The structural, magnetic and transport properties of La0.5Sr0.5MnO2.88 and La0.5Sr0.5Mn0.5Ti0.5O3 samples have been investigated systematically. Indeed, this series has been considered to understand the influence of physical parameters such as oxygen deficiency and titanium doping effect in undoped La0.5Sr0.5MnO3 sample. Ceramic material based on La0.5Sr0.5MnO2.88 exhibits interesting behaviours of charge-ordering (CO), ferromagnetic (FM) states and a good conductivity down to the lowest temperatures. The substitution of Ti for Mn destroyed drastically the CO, damaged the motion of itinerant eg electrons and changed the local parameters of perovskite cell. A change of the structure from tetragonal to rhombohedral symmetry is observed causing a weakening of double-exchange interaction. The experiment results show that the suppression of the CO is sensitive to the variety of Mn3+/Mn4+ ratio. In a field of 8 T at 10 K, FM and CO phase can be evaluated to be ∼20:80 according to the μexpcal ratio for La0.5Sr0.5MnO2.88, whereas the CO state is suppressed for La0.5Sr0.5Mn0.5Ti0.5O3 sample, FM and anti-ferromagnetic (AFM) phase are coexisted and evaluated to be ∼54:46, respectively.  相似文献   

13.
The structure, magnetic and electrical transport properties of La0.5Sr0.5MnO3 annealed in different atmosphere have been investigated. No evident change of structural symmetry and the Curie temperature is observed for the samples. The resistivity at zero magnetic field of the samples annealed in air and nitrogen exhibits a metal–insulator transition, while no metal–insulator transition is observed for the sample annealed in oxygen, and for which the resistivity decreases monotonously with increasing temperature. Surprisingly, when an external magnetic field is applied, a metal–insulator transition appears for the sample annealed in oxygen. It is suggested that the annealing atmosphere affects the competition between FM and AFM phases due to the change of Mn4+/Mn3+ ratio and the oxygen/cation vacancies, and has a great influence on the electrical transport properties of La0.5Sr0.5MnO3.  相似文献   

14.
Raman scattering experiments have been carried out on single crystals of Nd0.5Sr0.5MnO3 as a function of temperature in the range of 320–50 K, covering the paramagnetic insulator-ferromagnetic metal transition at 250 K and the charge-ordering antiferromagnetic transition at 150 K. The diffusive electronic Raman scattering response is seen in the paramagnetic phase which continue to exist even in the ferromagnetic phase, eventually disappearing below 150 K. We understand the existence of diffusive response in the ferromagnetic phase to the coexistence of the different electronic phases. The frequency and linewidth of the phonons across the transitions show significant changes, which cannot be accounted for only by anharmonic interactions.  相似文献   

15.
Brillouin scattering experiments are carried out to study the surface acoustic waves in Nd0.5Sr0.5MnO3 as a function of temperature in the range of 40-300 K covering the metal-insulator and charge-ordering phase transitions. The surface modes include surface Rayleigh wave, pseudo-surface acoustic wave (PSAW) and high velocity PSAW. The observed softening of the sound velocities for the surface modes below paramagnetic to ferromagnetic transition, Tc is related to the softening of the C44 elastic constant. The subsequent hardening of the sound velocity below the charge ordering transition temperature Tco is attributed to the coupling of the acoustic phonon to the charge ordered state via long range ordering of the strong Jahn-Teller (JT) distortion.  相似文献   

16.
This paper reports on the results of investigations into the magnetic and magnetoelastic properties of Nd0.5Sr0.5MnO3 single crystals in pulsed magnetic fields up to 250 kOe, the magnetic and kinetic properties of these crystals in weak static magnetic fields, and their thermal expansion. It is demonstrated that the studied properties exhibit a number of anomalies due to a transition from the antiferromagnetic semiconducting state to the ferromagnetic metallic state upon suppression of charge ordering.  相似文献   

17.
研究了Nd0.5Ca0.5MnO3体系的结构和输运特性. 结构 分析表明,在300K下,体系表现为O′型正交结构并存在典型的Jahn-Teller畸变.在8 T磁场 下,体系出现顺磁绝缘-铁磁金属的转变,庞磁电阻效应发生. 磁测量发现,样品的奈尔温 度TN和电荷有序转变温度TCO分别在150和240K左右,在41K左右出 现典型再入型自旋玻璃行为,同时观察到了负的磁化率异常. 结果表明,Nd关键词: 庞磁电阻 自旋玻璃态 负磁化强度 电荷有序  相似文献   

18.
The crystal and magnetic structures of the oxygen deficient manganites La0.7Sr0.3MnO3-d (d = 0.15, 0.20) have been studied by means of powder neutron diffraction over the 0–5.2 GPa pressure and 10–290 K temperature ranges. La0.7Sr0.3MnO2.85 exhibits a coexistence of rhombohedral and tetragonal (I4/mcm) crystal structures and below Tg ~ 50 K a spin glass state is formed. La0.7Sr0.3MnO2.80 exhibits a tetragonal (I4/mcm) crystal structure. Below Tg ~ 50 K a phase separated magnetic state is formed, involving coexistence of C-type AFM domains with spin glass domains. In both compounds the crystal structure and magnetic states remain stable upon compression. The factors leading to the formation of different magnetic states in La0.7Sr0.3MnO3-d (d = 0.15, 0.20) and their specific high pressure behavior, contrasting with that of the stoichiometric A0.5Ba0.5MnO3 (A = Nd, Sm) compounds showing pressure-induced suppression of the spin glass state and the appearance of the FM state, are analysed.  相似文献   

19.
The magnetic properties of Ca-doped Nd0.5Sr0.5MnO3 have been studied by electron spin resonance (ESR) and dc magnetization measurements. The antiferromagnetic order and charge order are found to occur separately at TN=200 K and Tco=150 K, respectively. Compared to the undoped Nd0.5Sr0.5MnO3, the ferromagnetic correlations are suppressed by doping of the small Ca2+ ion. In addition, the antiferromagnetic transition temperature is enhanced to 200 K, which can be explained by an increase of superexchange interaction between Mn3+ and Mn4+ ions as their distance decreases.  相似文献   

20.
The magnetic properties and crystal structure of the Pr0.5Sr0.5Co0.5Fe0.5O3 compound are studied by neutron and x-ray diffractions using synchrotron radiation. These measurements show that this compound is a dielectric spin glass with a magnetic moment freezing temperature of about 70 K. As temperature decreases in the range 30–95 K, a structure phase transition of the first order occurs with an increase in the symmetry from orthorhombic (space group Imma) to tetragonal (space group I4/mcm). It is assumed that the transition is caused by a change in the 4f electron configuration of the Pr3+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号