共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with some relevant properties of Runge–Kutta (RK) methods and symplectic partitioned Runge–Kutta (PRK) methods. First, it is shown that the arithmetic mean of a RK method and its adjoint counterpart is symmetric. Second, the symplectic adjoint method is introduced and a simple way to construct symplectic PRK methods via the symplectic adjoint method is provided. Some relevant properties of the adjoint method and the symplectic adjoint method are discussed. Third, a class of symplectic PRK methods are proposed based on Radau IA, Radau IIA and their adjoint methods. The structure of the PRK methods is similar to that of Lobatto IIIA–IIIB pairs and is of block forms. Finally, some examples of symplectic partitioned Runge–Kutta methods are presented. 相似文献
3.
4.
The definition of stability for Runge–Kutta–Nyström methods applied to stiff second-order in time problems has been recently revised, proving that it is necessary to add a new condition on the coefficients in order to guarantee the stability. In this paper, we study the case of second-order in time problems in the nonconservative case. For this, we construct an $RThe definition of stability for Runge–Kutta–Nystr?m methods applied to stiff second-order in time problems has been recently revised, proving that it is necessary to add a new condition on the coefficients in order to guarantee the stability. In this paper, we study the case of second-order in time problems in the nonconservative case. For this, we construct an -stable Runge–Kutta–Nystr?m method with two stages satisfying this condition of stability and we show numerically the advantages of this new method.This research was supported by MTM 2004-08012 and JCYL VA103/04. 相似文献
5.
Cong Nguyen Huu Strehmel Karl Weiner Rdiger Podhaisky Helmut 《Advances in Computational Mathematics》1999,10(2):115-133
This paper describes the construction of block predictor–corrector methods based on Runge–Kutta–Nyström correctors. Our approach is to apply the predictor–corrector method not only with stepsize h, but, in addition (and simultaneously) with stepsizes a i h, i = 1 ...,r. In this way, at each step, a whole block of approximations to the exact solution at off‐step points is computed. In the next step, these approximations are used to obtain a high‐order predictor formula using Lagrange or Hermite interpolation. Since the block approximations at the off‐step points can be computed in parallel, the sequential costs of these block predictor–corrector methods are comparable with those of a conventional predictor–corrector method. Furthermore, by using Runge–Kutta–Nyström corrector methods, the computation of the approximation at each off‐step point is also highly parallel. Numerical comparisons on a shared memory computer show the efficiency of the methods for problems with expensive function evaluations. 相似文献
6.
Explicit Runge–Kutta Nyström pairs provide an efficient way to find numerical solutions to second-order initial value problems when the derivative is cheap to evaluate. We present new optimal pairs of orders ten and twelve from existing families of pairs that are intended for accurate integrations in double precision arithmetic. We also present a summary of numerical comparisons between the new pairs on a set of eight problems which includes realistic models of the Solar System. Our searching for new order twelve pairs shows that there is often not quantitative agreement between the size of the principal error coefficients and the efficiency of the pairs for the tolerances we are interested in. Our numerical comparisons, as well as establishing the efficiency of the new pairs, show that the order ten pairs are more efficient than the order twelve pairs on some problems, even at limiting precision in double precision. 相似文献
7.
8.
The equations defining both the exact and the computed solution to an initial value problem are related to a single functional equation, which can be regarded as prototypical. The functional equation can be solved in terms of a formal Taylor series, which can also be generated using an iteration process. This leads to the formal Taylor expansions of the solution and approximate solutions to initial value problems. The usual formulation, using rooted trees, can be modified to allow for linear combinations of trees, and this gives an insight into the nature of order conditions for explicit Runge–Kutta methods. A short derivation of the family of fourth order methods with four stages is given. 相似文献
9.
10.
J. G. Verwer 《Numerische Mathematik》2009,112(3):485-507
We study the numerical time integration of a class of viscous wave equations by means of Runge–Kutta methods. The viscous
wave equation is an extension of the standard second-order wave equation including advection–diffusion terms differentiated
in time. The viscous wave equation can be very stiff so that for time integration traditional explicit methods are no longer
efficient. A-Stable Runge–Kutta methods are then very good candidates for time integration, in particular diagonally implicit ones. Special
attention is paid to the question how the A-Stability property can be translated to this non-standard class of viscous wave equations.
相似文献
11.
《Journal of Computational and Applied Mathematics》2001,132(1):107-125
Iterated deferred correction is a widely used approach to the numerical solution of first-order systems of nonlinear two-point boundary value problems. Normally, the orders of accuracy of the various methods used in a deferred correction scheme differ by 2 and, as a direct result, each time deferred correction is used the order of the overall scheme is increased by a maximum of 2. In [16], however, it has been shown that there exist schemes based on parameterized Runge–Kutta methods, which allow a higher increase of the overall order. A first example of such a high-order convergent scheme which allows an increase of 4 orders per deferred correction was based on two mono-implicit Runge–Kutta methods. In the present paper, we will investigate the possibility for high-order convergence of schemes for the numerical solution of second-order nonlinear two-point boundary value problems not containing the first derivative. Two examples of such high-order convergent schemes, based on parameterized Runge–Kutta-Nyström methods of orders 4 and 8, are analysed and discussed. 相似文献
12.
《Applied mathematics and computation》1999,102(1):63-76
In this work we dial with the treatment of second order retarded differential equations with periodic solutions by explicit Runge–Kutta–Nyström methods. In the past such methods have not been studied for this class of problems. We refer to the underline theory and study the behavior of various methods proposed in the literature when coupled with Hermite interpolants. Among them we consider methods having the characteristic of phase–lag order. Then we consider continuous extensions of the methods to treat the retarded part of the problem. Finally we construct scaled extensions and high order interpolants for RKN pairs which have better characteristics compared to analogous methods proposed in the literature. In all cases numerical tests and comparisons are done over various test problems. 相似文献
13.
14.
15.
16.
《Journal of Computational and Applied Mathematics》2012,236(6):1155-1182
In this paper we consider Runge–Kutta methods for jump–diffusion differential equations. We present a study of their mean-square convergence properties for problems with multiplicative noise. We are concerned with two classes of Runge–Kutta methods. First, we analyse schemes where the drift is approximated by a Runge–Kutta ansatz and the diffusion and jump part by a Maruyama term and second we discuss improved methods where mixed stochastic integrals are incorporated in the approximation of the next time step as well as the stage values of the Runge–Kutta ansatz for the drift. The second class of methods are specifically developed to improve the accuracy behaviour of problems with small noise. We present results showing when the implicit stochastic equations defining the stage values of the Runge–Kutta methods are uniquely solvable. Finally, simulation results illustrate the theoretical findings. 相似文献
17.
Chengming Huang 《Numerische Mathematik》2009,111(3):377-387
This paper is concerned with the study of the delay-dependent stability of Runge–Kutta methods for delay differential equations.
First, a new sufficient and necessary condition is given for the asymptotic stability of analytical solution. Then, based
on this condition, we establish a relationship between τ(0)-stability and the boundary locus of the stability region of numerical methods for ordinary differential equations. Consequently,
a class of high order Runge–Kutta methods are proved to be τ(0)-stable. In particular, the τ(0)-stability of the Radau IIA methods is proved. 相似文献
18.
We consider semilinear evolution equations for which the linear part generates a strongly continuous semigroup and the nonlinear part is sufficiently smooth on a scale of Hilbert spaces. In this setting, we prove the existence of solutions which are temporally smooth in the norm of the lowest rung of the scale for an open set of initial data on the highest rung of the scale. Under the same assumptions, we prove that a class of implicit, A-stable Runge–Kutta semidiscretizations in time of such equations are smooth as maps from open subsets of the highest rung into the lowest rung of the scale. Under the additional assumption that the linear part of the evolution equation is normal or sectorial, we prove full order convergence of the semidiscretization in time for initial data on open sets. Our results apply, in particular, to the semilinear wave equation and to the nonlinear Schrödinger equation. 相似文献
19.
Yunkang Liu 《Advances in Computational Mathematics》1999,11(4):315-329
Systems of functional–differential and functional equations occur in many biological, control and physics problems. They also include functional–differential equations of neutral type as special cases. Based on the continuous extension of the Runge–Kutta method for delay differential equations and the collocation method for functional equations, numerical methods for solving the initial value problems of systems of functional–differential and functional equations are formulated. Comprehensive analysis of the order of approximation and the numerical stability are presented. 相似文献