首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A relaxation procedure for domain decomposition methods using finite elements   总被引:11,自引:0,他引:11  
Summary We present the convergence analysis of a new domain decomposition technique for finite element approximations. This technique was introduced in [11] and is based on an iterative procedure among subdomains in which transmission conditions at interfaces are taken into account partly in one subdomain and partly in its adjacent. No global preconditioner is needed in the practice, but simply single-domain finite element solvers are required. An optimal strategy for an automatic selection of a relaxation parameter to be used at interface subdomains is indicated. Applications are given to both elliptic equations and incompressible Stokes equations.  相似文献   

2.
A three-field finite element scheme designed for solving time-dependent systems of partial differential equations governing viscoelastic flows is introduced. The linearized form of this system is a generalized time-dependent Stokes system. Once a classical time-discretization is performed, the resulting three-field system of equations allows for a stable approximation of velocity, pressure and extra stress tensor, by means of continuous piecewise linear finite elements, in both two and three dimension space. Another advantage of the new formulation is the fact that it implicitly provides an algorithm for the iterative resolution of system non-linearities, in the case of viscoelastic flows. Additionally, convergence in an appropriate sense applying to these three flow fields is demonstrated, for such generalized Stokes system. Numerical results are given in order to illustrate the performance of the new approach.  相似文献   

3.
The authors compare the behavior of hybrid Trefftz p-elements with two different types of shape functions identically fulfilling governing differential equations. Numerical examples include several boundary problems for Laplace, Poisson, and plane elasticity equations. Accuracy of the solutions, convergence properties, numerical stability and sensitivity for mesh distortion are investigated. It is shown that both systems of the functions can be efficiently applied, although they have different properties. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Summary The diffraction of Kelvin waves by a finite barrier and depth discontinuities is considered using Wiener-Hopf technique. Diffracted wave and generation of double Kelvin wave are studied and comparison has been made with the case of semi-infinite barrier and depth discontinuity.
Zusammenfassung Die Beugung Kelvinscher Wellen an einer endlichen Schranke und mit Tiefen-Unstetigkeiten wird mittels der Wiener-Hopf-Methode betrachtet. Es werden die gebrochene Welle und die Erzeugung doppelter Kelvin-Wellen untersucht, und die Resultate werden mit dem Fall einer halbunendlichen Schranke verglichen.
  相似文献   

5.
Summary. There have been many efforts, dating back four decades, to develop stable mixed finite elements for the stress-displacement formulation of the plane elasticity system. This requires the development of a compatible pair of finite element spaces, one to discretize the space of symmetric tensors in which the stress field is sought, and one to discretize the space of vector fields in which the displacement is sought. Although there are number of well-known mixed finite element pairs known for the analogous problem involving vector fields and scalar fields, the symmetry of the stress field is a substantial additional difficulty, and the elements presented here are the first ones using polynomial shape functions which are known to be stable. We present a family of such pairs of finite element spaces, one for each polynomial degree, beginning with degree two for the stress and degree one for the displacement, and show stability and optimal order approximation. We also analyze some obstructions to the construction of such finite element spaces, which account for the paucity of elements available. Received January 10, 2001 / Published online November 15, 2001  相似文献   

6.
Superconvergence for triangular finite elements   总被引:2,自引:0,他引:2  
Based on two classes of the orthogonal expansions in a triangle, superconvergence of m-degree triangular finite element solution (for evenm) and its average gradient (for oddm) at symmetric points for a second order elliptic problem are studied. There are no other superconvergence points independent of the coefficients of elliptic equation. Project supported by the National Natural Science Foundation of China (Grant No. 19331021).  相似文献   

7.
In this paper, the p-version finite element method and its fictitious domain extension, the finite cell method, are extended to the finite strain J2 plasticity. High-order shape functions are used for the finite element approximation of volume-preserving plastic dominated deformations. The accuracy and efficiency of p-version elements and cells in the finite plastic strain range are evaluated by the computation of two benchmark problems. It is shown that they provide locking free behavior and simplified meshing. These results are verified in comparison with the results of h-version elements in F-bar formulation. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Based on an orthogonal expansion and orthogonality correction in an element, superconvergence at symmetric points for any degree rectangular serendipity finite element approximation to second order elliptic problem is proved, and its behaviour up to the boundary is also discussed.  相似文献   

9.
We present a new mixed finite element discretization for three-dimensional stationary incompressible magneto-hydrodynamics. The fluid variables are discretized by standard inf–sup stable velocity–pressure pairs and the magnetic variables by a mixed approach using Nédélec's elements of the first kind. The resulting method is shown to be quasi-optimally convergent. To cite this article: A. Schneebeli, D. Schötzau, C. R. Acad. Sci. Paris, Ser. I 337 (2003).  相似文献   

10.
Superconvergence for rectangular mixed finite elements   总被引:4,自引:0,他引:4  
Summary In this paper we prove superconvergence error estimates for the vector variable for mixed finite element approximations of second order elliptic problems. For the rectangular finite elements of Raviart and Thomas [19] and for those of Brezzi et al. [4] we prove that the distance inL 2 between the approximate solution and a projection of the exact one is of higher order than the error itself.This result is exploited to obtain superconvergence at Gaussian points and to construct higher order approximations by a local postprocessing.  相似文献   

11.
After it is shown that the classical five-point mesh-centered finite difference scheme can be derived from a low-order nodal finite element scheme by using nonstandard quadrature formulae, higher-order block mesh-centered finite difference schemes for second-order elliptic problems are derived from higher-order nodal finite elements with nonstandard quadrature formulae as before, combined to a procedure known as “transverse integration.” Numerical experiments with uniform and nonuniform meshes and different types of boundary conditions confirm the theoretical predictions, in discrete as well as continuous norms. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 439–465, 1998  相似文献   

12.
In the present paper the kinematic analysis of mechanisms is based on the application of finite elements is discussed. It is shown how the kinematic properties of the rigid-body motions of a mechanism can be obtained from an analysis of the stiffness matrix of a simple model comprising rod-type elements in the case of planar mechanisms. In the event that there is also a more complex finite element model of the mechanism, onemay in addition obtain thenode values from the results achieved with the simple model. Special attention is given to nonlinear position problems, i.e. initial, successive, deformed, and static equilibrium. An error function is provided that is valid in each case. This function is derived from the elastic potential function, and uses Laggrange multipliers and penalty functions. The result is an application of the primal-dual method, or augmented Lagraange multipliers (ALM) method. This function is minimized by means of Newtons' method, which leads in simple form to the vector gradient as a force vector. The second-derivative matrix is derived from the stifness matrix, to which a complementary matrix owing toe nonlinearity introduced by the large displacements is added.

This method can be easily implemented on a computer. The computer program will be able to perform a wide variety of kinematic analyses of any planar mechanism with lower pairs. The models of the mechanism are very simple, and need only a few tens of degrees of freedom even for the most complex mechanisms. The CPU time is also very low due to the simplicity of the method and its good convergence properties.  相似文献   


13.
Two new families of Reissner-Mindlin triangular finite elements are analyzed. One family, generalizing an element proposed by Zienkiewicz and Lefebvre, approximates (for the transverse displacement by continuous piecewise polynomials of degree , the rotation by continuous piecewise polynomials of degree plus bubble functions of degree , and projects the shear stress into the space of discontinuous piecewise polynomials of degree . The second family is similar to the first, but uses degree rather than degree continuous piecewise polynomials to approximate the rotation. We prove that for , the errors in the derivatives of the transverse displacement are bounded by and the errors in the rotation and its derivatives are bounded by and , respectively, for the first family, and by and , respectively, for the second family (with independent of the mesh size and plate thickness . These estimates are of optimal order for the second family, and so it is locking-free. For the first family, while the estimates for the derivatives of the transverse displacement are of optimal order, there is a deterioration of order in the approximation of the rotation and its derivatives for small, demonstrating locking of order . Numerical experiments using the lowest order elements of each family are presented to show their performance and the sharpness of the estimates. Additional experiments show the negative effects of eliminating the projection of the shear stress.

  相似文献   


14.
Summary. We present an adaptive finite element method for solving elliptic problems in exterior domains, that is for problems in the exterior of a bounded closed domain in , . We describe a procedure to generate a sequence of bounded computational domains , , more precisely, a sequence of successively finer and larger grids, until the desired accuracy of the solution is reached. To this end we prove an a posteriori error estimate for the error on the unbounded domain in the energy norm by means of a residual based error estimator. Furthermore we prove convergence of the adaptive algorithm. Numerical examples show the optimal order of convergence. Received July 8, 1997 /Revised version received October 23, 1997  相似文献   

15.
We consider Maxwell’s equations with periodic coefficients as it is usually done for the modeling of photonic crystals. Using Bloch/Floquet theory, the problem reduces in a standard way to a modification of the Maxwell cavity eigenproblem with periodic boundary conditions. Following [8], a modification of edge finite elements is considered for the approximation of the band gap. The method can be used with meshes of tetrahedrons or parallelepipeds. A rigorous analysis of convergence is presented, together with some preliminary numerical results in 2D, which fully confirm the robustness of the method. The analysis uses well established results on the discrete compactness for edge elements, together with new sharper interpolation estimates.  相似文献   

16.
17.
Three types of partial hybrid finite elements are presented in order to set up a global/local finite element model for analysis of composite laminates. In the global/local model, a composite laminate is divided into three different regions: global, local, and transition regions. These are modeled using three different elements. In the global region, a 4-node degenerated plate/shell element is used to model the overall response of the composite laminate. In the local region, a multilayer element is used to predict detailed stress distribution. In the transition region, a multilayer transition element is used to smoothly connect the two previous elements. The global/local finite element model satisfies the compatibility of displacement at the boundary between the global region and the local region. It also satisfies the continuity of transverse stresses at interlaminar surfaces and traction conditions on the top and bottom surfaces of composite laminates. The global/local finite element model has high accuracy and efficiency for stress analysis of composite laminates. A numerical example of analysis of a laminated strip with free edge is presented to illustrate the accuracy and efficiency of the model.  相似文献   

18.
In this paper, a new stabilized finite element method based on two local Gauss integrations is considered for the two-dimensional viscoelastic fluid motion equations, arising from the Oldroyd model for the non-Newtonian fluid flows. This new stabilized method presents attractive features such as being parameter-free, or being defined for non-edge-based data structures. It confirms that the lowest equal-order P 1???P 1 triangle element and Q 1???Q 1 quadrilateral element are compatible. Moreover, the long time stabilities and error estimates for the velocity in H 1-norm and for the pressure in L 2-norm are obtained. Finally, some numerical experiments are performed, which show that the new method is applied to this model successfully and can save lots of computational cost compared with the standard ones.  相似文献   

19.
Finite element modelling of hydrostatic compaction where the applied pressure acts normal to the deformed surface requires a geometric nonlinear formulation and follower load terms [1, 5, 7]. These concepts are applied to high order [6] (p-FEM) elements with hierarchic shape functions. Applying the blending function method allows to precisely describe curved boundaries on coarse meshes. High order elements exhibit good performance even for high aspect ratios and strong distortion and therefore allow an efficient discretization of thin-walled structures. Since high order finite elements are less prone to locking effects a pure displacement-based formulation can be chosen. After introducing the basic concept of the p-version the application of follower loads to geometrically nonlinear high order elements is presented. For the numerical solution the displacement based formulation is linearized yielding the basis for a Newton-Raphson iteration. The accuracy and performance of the high order finite element scheme is demonstrated by a numerical example. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号