首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
刘伟  刘雄华  崔伟斌  龚文杰  张志东 《中国物理 B》2013,22(2):27104-027104
Recent advances in the study of exchange couplings in magnetic films are introduced.To provide a comprehensive understanding of exchange coupling,we have designed different bilayers,trilayers and multilayers,such as anisotropic hard/soft-magnetic multilayer films,ferromagnetic/antiferromagnetic/ferromagnetic trilayers,[Pt/Co]/NiFe/NiO heterostructures,Co/NiO and Co/NiO/Fe trilayers on an anodic aluminum oxide(AAO) template.The exchange-coupling interaction between soft-and hard-magnetic phases,interlayer and interfacial exchange couplings and magnetic and magnetotransport properties in these magnetic films have been investigated in detail by adjusting the magnetic anisotropy of ferromagnetic layers and by changing the thickness of the spacer layer,ferromagnetic layer,and antiferromagnetic layer.Some particular physical phenomena have been observed and explained.  相似文献   

2.
固定CoNiFeMn双层膜中反铁磁层的厚度,改变CoNi铁磁层的成分来调节磁化强度,从而研究铁磁层的饱和磁化强度对CoNiFeMn双层膜中交换偏置的影响.研究表明,CoNiFeMn界面的交换耦合能U不是一个常量,而是随(MFM)12的增加而线性增加.其原因是铁磁层磁矩通过界面相互作用在反铁磁层中形成的局域交换磁场,在磁场冷却时影响反铁磁层的自旋结构或磁畴结构及双层膜中的交换偏置 关键词: 交换偏置 磁化强度  相似文献   

3.
Oscillatory exchange bias in both magnitude and in sign has been observed in epitaxial (100)Cr/Ni(81)Fe19 bilayers due to the incommensurate spin-density waves in antiferromagnetic (100)Cr layers. Salient effects due to the spin-flip transition between longitudinal and transverse spin-density waves as well as that of expanding wavelength have been observed.  相似文献   

4.
Exchange-biased bilayers are widely used in the pinned layers of spintronic devices. While magnetic field annealing (MFA) was routinely engaged during the fabrication of these devices, the annealing effect of NiO/CoFe bilayers is not yet reported. In this paper, the transition from NiO/Co90Fe10 bilayer to nanocomposite single layer was observed through rapid thermal annealing at different temperatures under magnetic field. The as-deposited and low-temperature (<623 K) annealed samples had rock salt (NiO) and face center cubic (Co90Fe10) structures. On the other hand, annealing at 623 K and 673 K resulted in nanocomposite single layers composed of oxides (matrix) and alloys (precipitate), due to grain boundary oxidization and strong interdiffusion in the NiO/CoFe and CoFe/SiO2 interfaces. The structural transition was accompanied by the reduction of grain sizes, re-ordering of crystallites, incensement of roughness, and reduction of Ni2+. When measured at room temperature, the bilayers exhibited soft magnetism with small room-temperature coercivity. The nanocomposite layers exhibited an enhanced coercivity due to the changes in the magnetization reversal mechanism by pinning from the oxides. At 10 K, the increased antiferromagnetic anisotropy in the NiO resulted in enhanced coercivity and exchange bias in the bilayers. The nanocomposites exhibited weaker exchange bias compared with the bilayers due to frustrated interfacial spins. This investigation on how the magnetic properties of exchange-biased bilayers are influenced by magnetic RTA provides insights into controlling the magnetization reversal properties of thin films.  相似文献   

5.
In this work, the magnetic and transport properties of Fe/SiO2/Ni and Fe/SiO2/Co multilayers grown on Si/SiO2 substrates have been studied. The samples have been prepared by two-stage deposition process. In the first stage, Fe layer and SiO2 interlayer of both samples are grown by ion beam deposition technique at room temperature. Then the samples are taken out to ambient atmosphere and loaded into a pulse laser deposition (PLD) chamber. Prior to the deposition of top layer, the samples are cleaned by annealing at 150 °C. In the second stage, Ni (or Co) layer is prepared by PLD technique at room temperature. The thickness of deposited layers has been measured by Rutherford back scattering (RBS). Magnetic properties of ferromagnetic bilayers have been investigated by room-temperature ferromagnetic resonance (FMR) and vibrating sample magnetometer (VSM) techniques. Standard four-point magneto-transport measurements at various temperatures have been performed. Two-step switching in the in-plane hysteresis loops of Fe/SiO2/Ni and Fe/SiO2/Co samples is observed. A crossing in the middle of hysteresis loops of both samples points to a weak antiferromagnetic interaction between the magnetic layers of the stacks. Saturation magnetization values have been obtained from the VSM measurements of samples with DC magnetic field perpendicular to the films surface. Magneto-transport measurements have shown the predominant contribution of anisotropic magnetic resistance both at room and low temperatures. FMR studies of Fe/SiO2/Ni and Fe/SiO2/Co samples have revealed additional non-uniform (surface and bulk SWR) modes, which behavior has been explained in the framework of the surface inhomogeneity model. An origin of the antiferromagnetic interaction has been discussed.  相似文献   

6.
Exchange anisotropy in FM/AFM bilayers has given a lot of static magnetization properties such as enhanced coercivity and magnetization loop shifts. These phenomena are primarily from the effective anisotropies introduced into a ferromagnet by exchange coupling with a strongly anisotropic antiferromagnet. These effective anisotropies can also be used to explain the dynamic consequences of exchange-biased bilayers. In this article, the dynamic consequences such as exchange-induced susceptibility, exchange-induced permeability, and the corresponding domain wall characteristics in the exchange-biased structures of ferromagnet/antiferromagnet1/antiferromagnet2 are studied. The results show that the second antiferromagnetic layer can largely affect the dynamic consequences of exchange-biased bilayers. Especially in the case of critical temperature, the effects become more obvious. Practically, the exchange anisotropy of biased bilayer system can be tuned by exchange coupling with the second antiferromagnetic layer.  相似文献   

7.
The magnetic properties of Mo/IrMn/Co/Mo/SiO2/Si structures with alternative sequences of the antiferromagnetic and ferromagnetic layers have been studied by measuring the angular dependence of the high-frequency radiation absorption in the ferromagnetic resonance region. The layers have been prepared by pulsed laser deposition in the absence of a magnetic field. It has been found that thermal annealing and cooling make it possible to create the exchange bias in the structure with the upper antiferromagnetic layer at a temperature much below the Néel temperature. At the same time, the identical heat treatment does not induce the exchange bias in the structure with the upper ferromagnetic layer. The possible mechanisms of the phenomena observed are discussed.  相似文献   

8.
The thickness dependence of different diluted antiferromagnetic Co1−yO layers on the exchange bias (EB) in ferro/antiferromagnetic Co/Co1−yO bilayers is investigated. For undiluted samples the EB decreases above a layer thickness of 5 nm whereas it increases and saturates for AFM layers thicker than 20 nm for diluted samples. These findings support the domain state model for EB.  相似文献   

9.
Khomenko  E. V.  Chechenin  N. G.  Goikhman  A. Yu.  Zenkevich  A. V. 《JETP Letters》2008,88(9):602-606
JETP Letters - The magnetic properties of Mo/IrMn/Co/Mo/SiO2/Si structures with alternative sequences of the antiferromagnetic and ferromagnetic layers have been studied by measuring the angular...  相似文献   

10.
We present experimental evidence for a three-dimensional noncollinear antiferromagnetic spin structure in ultrathin single-crystalline fcc Fe50Mn50 layers using magnetic circular dichroism photoelectron emission microscopy and x-ray magnetic linear dichroism. Layer-resolved as-grown domain images of epitaxial trilayers grown on Cu(001) in which FeMn is sandwiched between ferromagnetic layers with different easy axes reveal the presence of antiferromagnetic spin components in the film plane and normal to the film plane. An FeMn spin structure with no collinear order in the film plane is consistent with the absence of x-ray magnetic linear dichroism in Fe L3 absorption in FeMn/Co bilayers.  相似文献   

11.
A new class of single-particle excitations in tunnel-coupled electron bilayers is investigated by inelastic light scattering. The dispersion law and the dependence of the energies of these excitations on the degree of unbalance between the layers have been measured. A new spectroscopic method is proposed for determining the degree of unbalance between bilayers.  相似文献   

12.
A study of exchange bias phenomenon in ferrimagnetic /ferromagnetic FeGd/ FeSn bilayers is presented. The amorphous FeSn and FeGd alloys have been grown by co-evaporation. Specific growth conditions allow to induce an uniaxial anisotropy in both alloys in a parallel direction. After saturation of the bilayers under a positive field, the hysteresis loop of one of the layer is shifted towards a positive field H E . The sign of the exchange bias field H E is shown to be due to the antiferromagnetic coupling between the net magnetizations of both alloys. The field H E is studied as a function of the thickness of each layer and of the temperature. Using ac-susceptibility measurements and polarized neutron reflectometry, it is shown that the reversal of magnetization of the bilayers is dominated by the presence of a domain wall at the interface. This exchange bias system is shown to act as a potential well for the magnetic domain wall. Within this assumption and thanks to a precise magnetic characterization of each alloy, the evolution of H E with the thickness of the layers is well reproduced using simple one-dimensional analytical models for the domain wall or a more elaborate numerical approach.Received: 20 February 2003, Published online: 9 September 2003PACS: 75.60.Ch Domain walls and domain structure - 75.70.-i Magnetic properties of thin films, surfaces, and interfaces - 75.25.+z Spin arrangements in magnetically ordered materials (including neutron and spin-polarized electron studies, synchrotron-source X-ray scattering, etc.)  相似文献   

13.
Rebuilding of metal components with laser cladding forming   总被引:4,自引:0,他引:4  
Laser cladding forming (LCF) is a novel powerful tool for the repairing of metal components. Rebuilding of V-grooves on medium carbon steel substrates has been carried out with laser cladding forming technique using stainless steel powder as the cladding material. Microstructure of the deposited layers has been characterized using optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray microanalysis (EDAX), electron probe microanalysis (EPMA) and X-ray diffraction (XRD). Mechanical properties of the rebuilt V-groove samples have been evaluated by tensile and impacting tests and microhardness measurement. Experimental results show that good fusion bonding between the rebuilt layers and the substrate has been formed, and the microstructure of the cladding layers is mainly composed of fine, dense and defect-free epitaxial columnar dendrites. Due to the effect of grain size refinement, the tensile strength, impacting toughness, elongation and microhardness of the rebuilt samples have been greatly enhanced compared to those of the substrate. Microhardness is also very uniform throughout the rebuilt regions. With the growth of the deposited layers, the microhardness increases gradually. The good ductility of the deposited regions is verified by the SEM fracture analysis.  相似文献   

14.
Exchange bias effect has been widely employed for various magnetic devices.The experimentally reported magnitude of exchange bias field is often smaller than that predicted theoretically,which is considered to be due to the partly pinned spins of ferromagnetic layer by antiferromagnetic layer.However,mapping the distribution of pinned spins is challenging.In this work,we directly image the reverse domain nucleation and domain wall movement process in the exchange biased Co Fe B/Ir Mn bilayers by Lorentz transmission electron microscopy.From the in-situ experiments,we obtain the distribution mapping of the pinning strength,showing that only 1/6 of the ferromagnetic layer at the interface is strongly pinned by the antiferromagnetic layer.Our results prove the existence of an inhomogeneous pinning effect in exchange bias systems.  相似文献   

15.
The effects of annealing on the crystal and magnetic structures and magnetic properties of Co/Cu/Co films with antiferromagnetic and ferromagnetic coupling between Co layers were studied using transmission electron microscopy, Lorentz microscopy, atomic force microscopy, ferromagnetic resonance, and the magnetic induction method. The components of the coercivity and induced anisotropy of multilayer films are estimated theoretically. It is demonstrated that the behavior of the coercivity and induced anisotropy under thermal treatment is governed by changes in structural defects and indirect exchange.  相似文献   

16.
Fe clusters have been synthesised in ultra-high-vacuum chamber using a gas-stabilized cluster aggregation method that ensures good control of the cluster size and naturally oxidized in order to obtain Fe/Fe oxide core-shell nanoparticles. The morphology of an individual nanoparticle, as revealed by transmission electron microscopy, consists of a Fe core of an average diameter of 4.4 nm surrounded by an oxide shell of uniform thickness of about 1.2 nm in average. The nanoparticles may be assimilated with a ferro-/antiferromagnetic (FM/AF) system. The morpho-structural features have been correlated with magnetic measurements on the core-shell nanoparticles. A significant exchange bias effect has been measured, when the sample was field-cooled under an applied field of 3 T. As the morphology of core-shell nanoclusters is much more complicated than in FM/AF bilayers of regular thickness due to the particular geometry of the coronal AF layer, the shape and surface anisotropy have to be taken into account for a correct interpretation of the magnetic data.  相似文献   

17.
We have reported new magnetic and optical properties of Mn2O3 nanostructures.The nanostructures have been synthesized by the hydrothermal method combined with the adjustment of pH values in the reaction system.The particular characteristics of the nanostructures have been analyzed by employing X-Ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive X-ray(EDX) analysis,transmission electron microscopy(TEM),high resolution transmission electron microscopy(HRTEM),Raman spectroscopy(RS),UV-visible spectroscopy,and the vibrating sample magnetometer(VSM).Structural investigation manifests that the synthesized Mn2O3 nanostructures are orthorhombic crystal.Magnetic investigation indicates that the Mn2O3 nanostructures are antiferromagnetic and the antiferromagnetic transition temperature is at TN=83 K.Furthermore,the Mn2O3 nanostructures possess canted antiferromagnetic order below the Neel temperature due to spin frustration,resulting in hysteresis with large coercivity(1580 Oe) and remnant magnetization(1.52 emu/g).The UV-visible spectrophotometry was used to determine the transmittance behaviour of Mn2O3 nanostructures.A direct optical band gap of 1.2 eV was acquired by using the Davis-Mott model.The UV-visible spectrum indicates that the absorption is prominent in the visible region,and transparency is more than 80% in the UV region.  相似文献   

18.
铁磁/反铁磁双层膜中的磁锻炼效应   总被引:1,自引:0,他引:1       下载免费PDF全文
许勉  潘靖  沈影  胡经国 《物理学报》2010,59(10):7357-7361
采用Monte Carlo 方法,研究铁磁/反铁磁双层膜中的磁锻炼效应.结果表明,反铁磁层中冷场诱发的界面净磁化(钉扎效应)的磁弛豫可导致系统中的交换偏置场的磁锻炼效应.进一步研究表明,反铁磁层中掺杂可调控交换偏置场的磁锻炼效应,原因在于反铁磁层中掺杂能有效地改变冷场诱发的净磁化的磁弛豫过程.  相似文献   

19.
Aluminum films with thicknesses ranging from 1 nm to 12 nm have been sputtered on 20 nm thick Co layers. The properties of the Co/Al bilayers were studied by X-ray photoemission spectroscopy (XPS) and spin-echo nuclear magnetic resonance (NMR). Both methods show independently that a 1 nm Al film covers the Co surface completely. XPS and NMR also showed that layers thicker than 1 nm Al are not oxidized completely in ambient air. Similarities to and deviations from niobium with Al overlayers (Nb/Al) are described. Prerequisites for the fabrication of tunneling magnetoresistance devices based on Co or NiFe ferromagnets and an aluminum oxide barrier are discussed. Received: 7 July 1999 / Accepted: 11 November 1999 / Published online: 8 March 2000  相似文献   

20.
Effect of interface roughness on antiferromagnetic coupling between Fe layers in a Fe/Cr/Fe trilayer, with Cr layer having a wedge form has been studied. All the samples have been deposited simultaneously on substrates having different roughness, thus it is being considered that there is no variation in the morphological features like grain size and grain texture of the films. Measurements have been done as a function of Cr spacer layer thickness and the peak value of antiferromagnetic coupling strength is compared among different trilayers, thus any influence of spacer layer thickness fluctuation from sample to sample has also been avoided. The samples are characterized by X-ray reflectivity (XRR) and magneto-optic Kerr effect (MOKE). XRR results show that the roughness of the substrate is not replicated at the successive interfaces. Antiferromagnetic coupling between Fe layers decreases with the increase of roughness of Fe/Cr/Fe interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号