首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R2Co14B compounds (R = Pr, Nd and Tb) have been studied for evidence of spin reorientation in the temperature range 4.2 K − 1100 K with the use of magnetometry technique. It has been established that Pr2Co14BandTb2Co14B undergo spin reorientations at temperatures 664 K and 795 K, respectively. These are axis-to-plane reorientations with increasing temperature. Nd2Co14B undergoes two spin transitions as temperature progresses: one at ∼ 34 K (cone-to-axis) and the second at ∼ 546 K (axis-to-plane). A diagram of spin arrangements observed in all existing R2Co14B compounds has been constructed.  相似文献   

2.
RCo2B2 (R=Pr, Nd, Sm, Gd) and RCo4B4 (R=Pr, Nd, Sm) compounds have been investigated by X-ray and magnetometry techniques in the temperature range 4.2-300 K. These compounds crystallize in tetragonal crystal structures of the types CeAl2Ga2 and CeCo4B4, respectively, with lattice parameters decreasing for increasing atomic weight of the rare earth ion. All compounds order magnetically with the Curie temperatures much below room temperature. Anomalous magnetic behavior is observed for RCo4B4 alloys.  相似文献   

3.
The crystal structure and magnetic properties of quaternary rare-earth intermetallic borides R3Co29Si4B10 with R=La, Ce, Pr, Nd, Sm, Gd and Dy have been studied by X-ray powder diffraction and magnetization measurements. All compounds crystallize in a tetragonal crystal structure with the space group P4/nmm. Compounds with R=La, Ce, Pr, Nd and Sm are ferromagnets, while ferrimagnetic behavior is observed for R=Gd and Dy. The Curie temperatures vary between 149 K and 210 K. The Curie temperatures in R3Co29Si4B10 (R=Ce, Pr, Nd, Sm, Gd, Dy) compounds are roughly proportional to the de Gennes factors.  相似文献   

4.
Neutron diffraction measurements, made on powder samples, show that Ho4Co3 and Er4Co3 intermetallic compounds are ferrimagnetic at 4.2 K. The magnetic moments of the 2 holmium sites are 8.7 and 2.1 μB and those of the erbium sites are equal to 8.7 and 8.1μB. The cobal+ magnetic moment is 0.2μB for both compounds. The easy magnetization direction lies on the hexagonal plane for Ho4Co3 while for Er4Co3 there are 2 anisotropy directions. Exchange interactions between rare-earth ions of both sites are very weak compared with the total crystal field splitting of the ground state multiplet J. The crystal field parameters are calculated and the magnitude and direction of the rare-earth magnetic moments in each site is determined.  相似文献   

5.
Magnetic and electric hyperfine interaction of the nuclear probe 111In/111Cd in intermetallic compounds of the rare earth-gallium system have been investigated by perturbed angular correlation (PAC) spectroscopy. The PAC measurements, supported by X-ray diffraction, provide evidence for a marked phase preference of 111In for hexagonal RGa2 over orthorhombic RGa and of RGa3 with the L12 structure over RGa2. In the case of SmGa2, the magnetic hyperfine field Bhf, the electric quadrupole interaction and the angle β between Bhf and the symmetry axis of the electric field gradient have been determined as a function of temperature. The angle β?=?0 is consistent with the results of previous magnetization studies. Up to T?≤?17 K the magnetic hyperfine field has a constant value of Bhf?=?3.0(2) T. The rapid decrease at higher T gives the impression of a first-order transition with an order temperature of TN?=?19.5 K. In the RKKY model of indirect 4f interaction the ratio TC/Bhf(0) is a measure of the coupling constant. For 111Cd:SmGa2 (TC/Bhf(0)~6.5 K/T) this ratio is significantly smaller than for the same probe in other R intermetallics (SmAl2 ~9.5 K/T, Sm2In ~13.5 K/T).  相似文献   

6.
Some experimental evidence is given to show that the3d-4f spin coupling parameter is rather insensitive to the kind of the rare earth spin and iron composition in the R n Fe m intermetallics. The intersublattice molecular field has been calculated for the rich Fe–4f compounds on the basis of a value of 6.72 K for this parameter as derived from high magnetic field studies. This field affects the R magnetic moment and originates from iron sublattice in the R2Fe17, R6Fe23, RFe3 and RFe2 compounds. The values of the field for the new magnetic materials of the R2Fe14B type have also been calculated.  相似文献   

7.
CsMn1?xNixF3 with 0.3≦x≦0.5 and CsMn1?xCoxF3 with 0.4≦x≦0.65 have been found to be ferrimag with a Curie temperature 50±1K. The magnetic moment at 4.2 K is 1.42μB per formula-unit for CsMn0.65Ni0.35F3, and 1.77μB for CsMn0.6Co0.4F3. The crystal structure has been determined to be rhombohedral; it probably has a stacking of twelve CsF3-layers in the unit cell in hexagonal representation. Magnetic properties have been explained on the assumption that a Ni(Co) ion has a strong preference for occupying one of three inequivalent sites in the structure. It has been suggested that the magnetic moments of one-quarter of the magnetic ions couple antiparallel to those of the other three-quarters so that ferrimagnetism appears. The Curie temperature has been discussed in the molecular field approximation.  相似文献   

8.
The dependence on the metalloid content of some magnetic properties of Co100−x(Si0.6B0.4)x (22.5 ⩽ x ⩽ 30) and Co75Si25−xBx (10 ⩽ x ⩽ 25) amorphous alloys has been studied.Ribbons were subjected to different kinds of heating treatments: field annealing, stress annealing and stress-field annealing (tensile stress and longitudinal magnetic field applied simultaneously). While the anisotropies induced by simple field annealings are of the order of magnitude of 0.1 kJm-3, the anisotropy induced by stress-field annealing can reach values up to 0.5 kJm-3. The preferred axis is longitudinal for most of the annealing conditions. The temperature and composition dependence of the magnetostriction have been studied too.Stress, field and stress-field induced anisotropies have also been measured in Co66Fe9B25 samples (λs > 0). In this case the preferred axis is transverse to the ribbon axis.  相似文献   

9.
Magnetic properties and magnetocaloric effects were studied in (GdxY1?x)3Co11B4 ferrimagnetic compounds. Rather high values of the entropy changes were shown in large temperature ranges. The ΔS values were correlated with high temperature dependences of resultant magnetizations determined mainly by the gadolinium sublattice one. Large relative cooling power was also shown.  相似文献   

10.
It is established that excess oxygen content δ influences the exchange bias (EB) in layered GdBa-Co2O5 + δ cobaltite. The EB effect arises in p-type (δ > 0.5) cobaltite and disappears in n-type (δ < 0.5) cobaltite. The main parameters of EB in GdBaCo2O5.52(2) polycrystals are determined, including the field and temperature dependences of EB field H EB , blocking temperature T B , exchange coupling energy J i of antiferromagnet–ferromagnet (AFM–FM) interface, and dimensions of FM clusters. The training effect inherent in systems with EB has been studied. The results are explained in terms of exchange interaction between the FM and AFM phases. It is assumed that the EB originates from the coexistence of Co3+ and Co4+ ions that leads to the formation of monodomain FM clusters in the AFM matrix of cobaltite.  相似文献   

11.
Recent experimental results for the magnetic hyperfine field Bhf at the nuclei of s-p impurities such as 119Sn in intermetallic Laves phases RM2 (R=Gd, Tb, Dy, Ho, Er; M=Fe, Co) and 111Cd in R Co2, the impurity occupying a R site indicate that the ratio Bhf/μ3d exhibits different behavior when one goes from RFe2 to RCo2. In this work, we calculate these local moments and the magnetic hyperfine fields. In our model, Bhf has two contributions: one arising from the R ions, and the other arising from magnetic 3d-elements; these separate contributions allow the identification of the origin of different behavior of the ratio mentioned above. For 111Cd in RCo2 we present also the contributions for Bhf in the light rare earth Pr, Nd, Pm, Sm compounds. For the sake of comparison we apply also the model to 111Cd diluted in R Ni2. Our self-consistent magnetic hyperfine field results are in good agreement with those recent experimental data.  相似文献   

12.
Ultrasonic sound velocity measurements have been carried out in order to determine the elastic moduli, adiabatic compressibility and the Debye temperature of polycrystalline rare earth-cobalt Laves phase compounds RCo2(R = Pr, Nd, Sm, Gd, Tb, Dy, Ho, ErandLu) and YCo2 between 4.2 and 300 K. DyCo2 HoCo2 and ErCo2 exhibit a first-order transition at Tc. In SmCo2 and TbCo2 the phase transition is of the second-order accompanied by a large lattice softening. NdCo2, GdCo2 and HoCo2 show spin reorientations from one easy direction of magnetization to another one, at low temperatures, below Tc.The influence of an external magnetic field (up to 25 kOe) on the elastic properties of these Laves phases, the so-called ΔE effect was determined. No saturation was reached in SmCo2, TbCo2 and DyCo2 in magnetic fields up to 25 kOe. The behavior of the RCo2 compounds was compared with that of RFe2, published earlier.  相似文献   

13.
In this work we calculate the energy levels, wave functions and transition probabilities for a number of compounds whose crystal field parameters have been determined. We introduce a convergence criterion in the diagonalization of the Hamilton matrices dependent upon a self consistency test on the eigenvectors. This assures us of numerically accurate wave functions.First we calculated energy level and susceptibility differences in (Nd3+)PbMoO4 dependent on the multiplicative constants θn, used with the published Alm to determine the crystal field parameters Blm, (Blm = θnAlM). Calculated energy levels as a function of external magnetic field strength and orientation are compared with experimental results for three different sets of published crystal field parameters, Blm, for (Fe3+)TiO2. The ground state energy levels, and wave functions, have been calculated for the non-Kramers Ho3+ ion in the crystals PbMoO4, LaCl3 and HoCl3. Easily distinguishable variations in the temperature dependence of the Xzz component of the susceptibility are found as a function of the host crystal. It is pointed out that susceptibility calculations, based upon measured crystal field parameters, in conjunction with subsequent susceptibility measurements, provide a good check on the validity of the crystal field parameters.  相似文献   

14.
The magnetostriction of the off-stoichiometric R2Fe17-type intermetallic compounds based on R2Fe14−xCoxSi2 (R=Y, Er, Tm and x=0, 4) was measured, using the strain gauge method in the temperature range 77-460 K under applied magnetic fields up to 1.5 T. All compounds show sign change and reduction in magnetostriction values compared to the R2Fe17 compounds by Si substitution. For Y2Fe14Si2 and Er2Fe14Si2, saturation behaviour is observed near magnetic ordering temperature (TC), whereas for Tm2Fe14Si2, saturation starts from T>143 K. Also, Co substitution has different effects on the magnetostriction of R2Fe14Si2 compounds. In Er2Fe10Co4Si2 and Tm2Fe10Co4Si2, saturation occurs below the spin reorientation temperature (TSR). In addition, in Er2Fe14Si2, a sign change occurs in the anisotropic magnetostriction (Δλ) as well as the volume magnetostriction (ΔV/V) at their TSR values. The volume magnetostrictions of the Tm-containing compounds show an anomaly around their TSR. In R2Fe14Si2 compounds, parastrictive behaviour is also observed in ΔV/V near their TC values. In addition, the magnetostriction of the sublattices is investigated. Results show that in R2Fe14Si2 compounds, the rare-earth sublattice contribution to magnetostriction is negative and comparable to the iron sublattice, whereas, in R2Fe10Co4Si2 compounds, the rare-earth sublattice contribution is positive and larger than Fe sublattice. These results are discussed based on the effect of Si and Co substitutions on the anisotropy field of these compounds. Influence of the spin reorientation transition on the magnetostriction of these compounds is discussed in terms of the anisotropic sublattice interactions.  相似文献   

15.
EPR of Gd3+ doped in Ce2M3(NO3)12.24H2O (M″ = Mg, Zn, Co) single crystals has been studied at various temperatures from room temperature to 77 K using ∼ 9.45 GHz EPR spectrometer. The observation of resolved Gd3+ spectra at room temperature in Ce3Co2(NO3)12.24H2O has been interpreted in terms of a random modulation of the interaction between the Gd3+ and the Co2+ ions by the rapid spin-lattice relaxation of Co2+ ions. It is found that the effective spin-lattice relaxation time T1T−n where n = 1.85 (Bz axis) and n = 1.75 (Bz axis) if 103 < T < 283 K.  相似文献   

16.
The temperature dependence of magnetization is analysed for R2Fe17C via the two-sublattice molecular field theory. The molecular field coefficients nFF, nRF and nRR are obtained, by which TC was calculated. Using the least-squares method, the fitted-form of HR(T) varying with temperature for each compound is presented. The results are analysed. In addition, the parameters F=MFe2(0)nFF/TC was calculated for each R2Fe17C. By F, some phenomena different from the normal view were explained.  相似文献   

17.
The electronic structure of hexagonal Gd3Co11B4 compound has been studied by X-ray photoemission spectroscopy (XPS) and ab initio self-consistent tight binding linear muffin tin orbital (TB LMTO) method. We have found a good agreement between the experimental XPS valence band spectra and theoretical LMTO calculations. Results showed that the Gd3Co11B4 compound is ferrimagnetic with the calculated total magnetic moment M=14.29 μB/f.u. The values of the magnetic moments on Co atoms strongly depend on the local environment. We have also compared the electronic structure and magnetic properties of Gd3Co11B4 compound with those of Nd3Co11B4 compound.  相似文献   

18.
The electronic structure of the Tm3Co11B4 compound has been studied by X-ray photoemission spectroscopy and ab initio self-consistent tight binding linear muffin tin orbital (TB LMTO) method. This compound crystallizes in the hexagonal Ce3Co11B4-type structure (P6/mmm). We have found a good agreement between the experimental XPS valence band spectra and theoretical ab initio calculations. The calculated total magnetic moment is equal to 13.635 μB/f.u. The magnetic moments on the Co atoms are antiparallel to the moments of the Tm atoms. Their values are depended on the local environment, especially on the number of the Co neighbors. The theoretical results are compared with other calculations, saturation magnetization measurements as well as neutron diffraction data for R3Co11B4 (R=Y, Nd, Gd, Tb).  相似文献   

19.
The emission Mössbauer spectra of Co3?x O4 defect films are measured in external magnetic fields at strengths of 0.6–3.5 T. It is shown that the memory effect is observed in the spectra of Co3?x O4 defect films after exposure to an external magnetic field. At temperatures above the Néel temperature T N=26 K, the memory effect manifests itself in an increase in the relative contribution from the spectral line of the tetrahedral A sublattice in the spinel structure of Co3?x O4 crystallites ([Co 0.83 2+ ]tetr[Co 2.20 3+ ]octO4 and [Co 0.95 2+ ]tetr[Co 2.10 3+ ]octO4 prior to and after the magnetic field treatment, respectively). The isomer shifts δ and the quadrupole splitting ΔE of the spectral lines for both A and B sublattices also change from δA=?0.19 mm/s, δB=?0.31 mm/s, and ΔE B =0.83 mm/s to the values δA=?0.24 mm/s, δB=?0.33 mm/s, and ΔE B =0.60 mm/s, which are close to δ and ΔE for stoichiometric Co3O4 oxide. In the low-temperature spectra (T<T N), the memory effect additionally shows itself as a decrease in the hyperfine magnetic field H hf of the spectral component for the A sublattice as compared to that in the spectra measured prior to the magnetic field treatment. It is assumed that the concentration of cation vacancies decreases (and, correspondingly, the fraction of reduced Co2+ cations increases) in the Co3?x O4 defect films under the action of an external magnetic field. A possible mechanism of this process is proposed.  相似文献   

20.
The low d.c. field susceptibilities and thermoremanence of a Co54Ga46 alloy are presented. A broad peak is observed in the zero field cooled susceptibility at a temperature TB, which decreases with increasing magnetic field, while the thermoremanence is found to persist to temperatures greater than TB. The behaviour is discussed in terms of the growth and subsequent blocking of superparamagnetic assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号