首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Intrinsically disordered proteins have been reported to undergo disorder‐to‐order transitions upon binding to their partners in the cell. The extent of the ordering upon binding and the lack of order prior to binding is difficult to visualize with classical structure determination methods. Binding of p27 to the Cdk2/cyclin A complex is accompanied by partial folding of p27 in the KID domain, with the retention of dynamic behavior for function, particularly in the C‐terminal half of the protein. Herein, native ion mobility mass spectrometry (IM‐MS) is employed to measure the intrinsic dynamic properties of p27, both in isolation and within the trimeric complex with Cdk2/cyclin A. The trimeric Cdk2/cyclin A/p27‐KID complex possesses significant structural heterogeneity compared to Cdk2/cyclin A. These findings support the formation of a fuzzy complex in which both the N‐ and C‐termini of p27 interact with Cdk2/cyclin A in multiple, closely associated states.  相似文献   

2.
The fucosylation of glycans leads to diverse structures and is associated with many biological and disease processes. The exact determination of fucoside positions by tandem mass spectrometry (MS/MS) is complicated because rearrangements in the gas phase lead to erroneous structural assignments. Here, we demonstrate that the combined use of ion‐mobility MS and well‐defined synthetic glycan standards can prevent misinterpretation of MS/MS spectra and incorrect structural assignments of fucosylated glycans. We show that fucosyl residues do not migrate to hydroxyl groups but to acetamido moieties of N‐acetylneuraminic acid as well as N‐acetylglucosamine residues and nucleophilic sites of an anomeric tag, yielding specific isomeric fragment ions. This mechanistic insight enables the characterization of unique IMS arrival‐time distributions of the isomers which can be used to accurately determine fucosyl positions in glycans.  相似文献   

3.
A rapid screening method based on traveling‐wave ion‐mobility spectrometry (TWIMS) combined with tandem mass spectrometry provides insight into the topology of interlocked and knotted molecules, even when they exist in complex mixtures, such as interconverting dynamic combinatorial libraries. A TWIMS characterization of structure‐indicative fragments generated by collision‐induced dissociation (CID) together with a floppiness parameter defined based on parent‐ and fragment‐ion arrival times provide a straightforward topology identification. To demonstrate its broad applicability, this approach is applied here to six Hopf and two Solomon links, a trefoil knot, and a [3]catenate.  相似文献   

4.
Moment equations for the motion of trace amounts of charged particles through dilute gases are developed from the Boltzmann equation. A new method for truncating the coupled moment equations is used to develop differential equations governing the moments in successive approximations. The first approximation equations are shown to agree completely with equations known to describe ion motion in drift-tube mass spectrometers, ion mobility spectrometers, ion traps, and collision-dominated ion cyclotron resonance experiments. Applications to differential mobility spectrometers and other devices are also described.  相似文献   

5.
The human breath contains indicators of human health and delivers information about different metabolism processes of the body. The detection and attribution of these markers provide the possibility for new, non-invasive diagnostic methods. In the recent study, ion mobility spectrometers are used to detect different volatile organic metabolites in human breath directly. By coupling multi-capillary columns using ion mobility spectrometers detection limits down to the ng/L and pg/L range are achieved. The sampling procedure of human breath as well as the detection of different volatiles in human breath are described in detail. Reduced mobilities and detection limits for different analytes occurring in human breath are reported. In addition, spectra of exhaled air using ion mobility spectrometers obtained without any pre-concentration are presented and discussed in detail. Finally, the potential use of IMS with respect to lung infection diseases will be considered.  相似文献   

6.
H. Borsdorf  E.G. Nazarov 《Talanta》2007,71(4):1804-1812
The ion mobilities of halogenated aromatics which are of interest in environmental chemistry and process monitoring were characterized with field-deployable ion mobility spectrometers and differential mobility spectrometers. The dependence of mobility of gas-phase ions formed by atmospheric-pressure photoionization (APPI) on the electric field was determined for a number of structural isomers. The structure of the product ions formed was identified by investigations using the coupling of ion mobility spectrometry with mass spectrometry (APPI-IMS-MS) and APPI-MS. In contrast to conventional time-of-flight ion mobility spectrometry (IMS) with constant linear voltage gradients in drift tubes, differential mobility spectrometry (DMS) employs the field dependence of ion mobility. Depending on the position of substituents, differences in field dependence were established for the isomeric compounds in contrast to conventional IMS in which comparable reduced mobility values were detected for the isomers investigated. These findings permit the differentiation between most of the investigated isomeric aromatics with a different constitution using DMS.  相似文献   

7.
Two‐ and three‐dimensional metallosupramolecules shaped like a Star of David were synthesized by the self‐assembly of a tetratopic pyridyl ligand with a 180° diplatinum(II) motif and PdII ions, respectively. In contrast to other strategies, such as template‐directed synthesis and stepwise self‐assembly, this design enables the formation of 2D and 3D structures in one step and high yield. The structures were characterized by both one‐dimensional (1H, 13C, 31P) and two‐dimensional (COSY, NOESY, DOSY) NMR spectroscopy, ESI‐MS, ion‐mobility mass spectrometry (IM–MS), AFM, and TEM. The stabilities of the 2D and 3D structures were measured and compared by gradient tandem mass spectrometry (gMS2). The high stability of the 3D Star of David was correlated to its high density of coordination sites (DOCS).  相似文献   

8.
Ion mobility-mass spectrometry   总被引:3,自引:0,他引:3  
This review article compares and contrasts various types of ion mobility-mass spectrometers available today and describes their advantages for application to a wide range of analytes. Ion mobility spectrometry (IMS), when coupled with mass spectrometry, offers value-added data not possible from mass spectra alone. Separation of isomers, isobars, and conformers; reduction of chemical noise; and measurement of ion size are possible with the addition of ion mobility cells to mass spectrometers. In addition, structurally similar ions and ions of the same charge state can be separated into families of ions which appear along a unique mass-mobility correlation line. This review describes the four methods of ion mobility separation currently used with mass spectrometry. They are (1) drift-time ion mobility spectrometry (DTIMS), (2) aspiration ion mobility spectrometry (AIMS), (3) differential-mobility spectrometry (DMS) which is also called field-asymmetric waveform ion mobility spectrometry (FAIMS) and (4) traveling-wave ion mobility spectrometry (TWIMS). DTIMS provides the highest IMS resolving power and is the only IMS method which can directly measure collision cross-sections. AIMS is a low resolution mobility separation method but can monitor ions in a continuous manner. DMS and FAIMS offer continuous-ion monitoring capability as well as orthogonal ion mobility separation in which high-separation selectivity can be achieved. TWIMS is a novel method of IMS with a low resolving power but has good sensitivity and is well intergrated into a commercial mass spectrometer. One hundred and sixty references on ion mobility-mass spectrometry (IMMS) are provided.  相似文献   

9.
Ion mobility spectrometers (IMS) are used widely to detect explosives, illegal drugs and chemical warfare agents. More than 70.000 units are under operation world-wide. One of the insufficiencies for broad use of different types of ion mobility spectrometers for civilian applications in the scientific or commercial world is the self- or company-made data format, thus complicating any further step towards a consistent evaluation. The problem starts with rather simple visualisation software for rather complex data structures. We describe a Java based software platform with respect to visualisation of IMS data, especially data of IMS coupled to Multi-capillary columns (MCC).  相似文献   

10.
The zero-field mobilities of many atomic ions in rare gases are calculated from highly accurate, ab initio potential energy curves. They are expected to be accurate to at least 0.05%, thus allowing them to be used to calibrate mobility measurements in different drift-tube and ion mobility mass spectrometers.  相似文献   

11.
Current commercially available ion mobility spectrometers are intended for the analysis of chemicals in the gas phase. Sample introduction methods, such as direct air sampling, a GC injector or a thermal desorber, are commonly an integral part of these instruments. This paper describes an electrospray ionization ion mobility spectrometer system that allows direct introduction samples in solution phase. This allows direct analysis of non-volatile organic and biological samples, and avoids decomposition of thermally liable samples, providing reliable chemical identification. In addition, the new ion mobility spectrometer allows mobility analysis with high resolving power. Commonly used commercial IMS systems provide resolving powers between 10 and 30; this new ion mobility spectrometer has resolving power greater than 60 for routine analysis. A high resolution instrument is necessary for many applications where a complex mixture needs to be separated and quantified. This paper demonstrates the advantages of using a high resolution ion mobility spectrometer and an electrospray ionization source for the analysis of non-volatile pharmaceuticals as well as dissolved explosive in solution phase.  相似文献   

12.
We demonstrate that surface‐induced dissociation (SID) coupled with ion mobility mass spectrometry (IM‐MS) is a powerful tool for determining the stoichiometry of a multi‐subunit ribonucleoprotein (RNP) complex assembled in a solution containing Mg2+. We investigated Pyrococcus furiosus (Pfu) RNase P, an archaeal RNP that catalyzes tRNA 5′ maturation. Previous step‐wise, Mg2+‐dependent reconstitutions of Pfu RNase P with its catalytic RNA subunit and two interacting protein cofactor pairs (RPP21⋅RPP29 and POP5⋅RPP30) revealed functional RNP intermediates en route to the RNase P enzyme, but provided no information on subunit stoichiometry. Our native MS studies with the proteins showed RPP21⋅RPP29 and (POP5⋅RPP30)2 complexes, but indicated a 1:1 composition for all subunits when either one or both protein complexes bind the cognate RNA. These results highlight the utility of SID and IM‐MS in resolving conformational heterogeneity and yielding insights on RNP assembly.  相似文献   

13.
Analysis of molecules by ion mobility spectrometry coupled with mass spectrometry (IMS-MS) provides chemical information on the three dimensional structure and mass of the molecules. The coupling of ion mobility to trapping mass spectrometers has historically been challenging due to the large differences in analysis time between the two devices. In this paper we present a modification of the trapped ion mobility (TIMS) analysis scheme termed “Gated TIMS” that allows efficient coupling to a Fourier Transform Ion Cyclotron Resonance (FT-ICR) analyzer. Analyses of standard compounds and the influence of source conditions on the TIMS distributions produced by ion mobility spectra of labile ubiquitin protein ions are presented. Ion mobility resolving powers up to 100 are observed. Measured collisional cross sections of ubiquitin ions are in excellent qualitative and quantitative agreement to previous measurements. Gated TIMS FT-ICR produces results comparable to those acquired using TIMS/time-of-flight MS instrument platforms as well as numerous drift tube IMS-MS studies published in the literature.  相似文献   

14.
Ion mobility spectrometry is increasingly in demand for medical applications and its potential for implementation in food quality and safety or process control suggest rising use of instruments in this field as well. All those samples are commonly extremely complex and mostly humid mixtures. Therefore, pre-separation techniques have to be applied. As ion mobility spectrometers with gas-chromatographic pre-separation acquire a huge amount of data, effective data processing and automated evaluation by comparison of detected peak pattern with data bases have to be utilised. This requires accurate on-line calibration of the instruments to guarantee reproducible results, in particular with respect to identification of an analyte by determination of its ion mobility and retention time. To reduce environmental and instrumental influence, the reduced ion mobility is used. It is derived from the drift time normalised to electric field, length of the drift region and to temperature and pressure of the drift gas (traditional method). All data required for this normalisation are afflicted with a particular error and thus leading to a deviation of the calculated ion mobility value. Furthermore, this traditional method enables a calculation of the reduced ion mobility only after the measurement. To avoid those errors and to enable on-line calibration of ion mobility, an instrument specific factor is implemented generally representing all relevant variables. This factor can be determined from an initial measurement of few spectra and can thereafter be applied on the following measurement. The application of this approach obtained reproducible reduced ion mobility values for positive and negative ions over a broad drift time range and for common variation of ambient conditions as well for varying instrument conditions such as electric fields respectively drift times and in different drift gases. Moreover, the reduced ion mobility is available already during the measurements with a significantly higher reliability and accuracy which was increased to a factor of 5 compared to the traditional ion mobility determination and enables an on-line identification of analytes for the first time.  相似文献   

15.
The drift voltage is one of the key experimental parameters of any drift tube ion mobility spectrometer. In this work, we show that a universal relationship between optimum drift voltage and the resolving power reached at this point exists, governed only by temperature and ion charge state. With these two quantities known, the measured optimum drift voltage and resolving power combination can be used to estimate the ideality of the drift conditions inside a drift tube, since any deviation from the theoretical values must be caused by non-idealities in the ions’ drift. Analyzing drift voltage sweeps from nine different ion mobility spectrometers, a continuous increase in drift tube ideality over the past is observed, reaching from less than 50% thirty years ago to 99% for a current design based on printed circuit boards. Furthermore, possible causes for the observed non-idealities are discussed.  相似文献   

16.
Miniaturized low-cost drift tubes with high analytical performance are a key component for the design of powerful and mass-deployable hand-held ion mobility spectrometers. Thus, a simple model that estimates the influence of the geometrical dimensions on the analytical performance is highly desirable for an effective design process. In this work, we present a simple procedure to predict peak distortion based on only the electrical field distribution inside the drift tube, which can be rapidly simulated using the finite element method. A simulation of the ion motion is not required. Based on these results, we developed an ion mobility spectrometer manufactured entirely from standard printed circuit boards (PCB). Since no additional components were used apart from electrical and gas connectors, ion source and metal grids, the presented ion mobility spectrometer is very simple and inexpensive. Nevertheless, the design provides a resolving power of 82 at a drift length of 50 mm and a drift voltage of 3 kV using a tritium ion source and a field switching shutter. The limits of detection for one second of averaging are 80 pptv for acetone, 35 pptv for dimethyl methylphosphonate and 180 pptv for methyl salicylate.  相似文献   

17.
For the ionization of gas mixtures, several ionization sources can be coupled to an ion mobility spectrometer. Radioactive sources, e.g. beta radiators like 63Ni and 3H, are the most commonly used ionization sources. However, due to legal restrictions radioactive ionization sources are not applicable in certain applications. Non-radioactive alternatives are corona discharge ionization sources or photoionization sources. However, using an electron gun allows regulation of ion production rate, ionization time and recombination time by simply changing the operating parameters, which can be utilized to enhance the analytical performance of ion mobility spectrometers. In this work, the impact of an ionization source parameter variation on the ion mobility spectrum is demonstrated. Increasing the ion production rate, the amount of the generated ions increases leading to higher signal intensity while the noise remains constant. Thus, the signal to noise ratio can be increased, leading to better limits of detection. In a next step, the ion production rate is kept constant while the influence of ionization time on the ion mobility spectrum is investigated. It is shown, that varying the ionization time allows the determination of the reaction rate constants as additional information to the ion mobility. Furthermore, we show the prevention of discrimination processes by using short ionization times combined with an increased ion production rate. Thus, the limit of detection for benzene in presence of toluene is improved. Additionally, it is shown that using ion-ion recombination leads to the detection of the ion species with the highest proton affinity at higher recombination times while the low proton affine ions already recombined. Thus, the measurement of the ion mobility spectra at a defined recombination time allows a suppression of disturbing low proton affine substances.  相似文献   

18.
New detectors in environmental monitoring using tritium sources   总被引:1,自引:0,他引:1  
A new generation of ion mobility spectrometers has been designed especially for the environmental monitoring due to toxic compounds in ambient air: phosgene, halocarbons, isofluorane, halothane, formaldehyde, ethylenoxide, acrolein, chemical warfares and many others. The IMS is equipped by means of tritium ionization sources, which have lower radiation hazards than nickel-63 sources. Aromatics are monitored by means of a special version using photoionization. Minimal detectable concentrations are in the ppb-range, mostly even below.  相似文献   

19.
A planar high field asymmetric waveform ion mobility spectrometer (PFAIMS) with a micro-machined drift tube was characterized as a detector for capillary gas chromatography. The performance of the PFAIMS was compared directly to that of a flame ionization detector (FID) for the separation of a ketone mixture from butanone to decanone. Effluent from the column was continuously sampled by the detector and mobility scans could be obtained throughout the chromatographic analysis providing chemical inforrmation in mobility scans orthogonal to retention time. Limits of detection were approximately I ng for measurement of positive ions and were comparable or slightly better than those for the FID. Direct comparison of calibration curves for the FAIMS and the FID was possible over four orders of magnitude with a semi-log plot. The concentration dependence of the PFAIMS mobility scans showed the dependence between ion intensity and ion clustering, evident in other mobility spectrometers and atmospheric pressure ionization technologies. Ions were identified using mass spectrometry as the protonated monomer and the proton bound dimer of the ketones. Residence time for column effluent in the PFAIMS was calculated as approximately 1 ms and a 36% increase in extra-column broadening versus the FID occurred with the PFAIMS.  相似文献   

20.
Suppressing the mobility of anionic species in polymer electrolytes (PEs) is essential for mitigating the concentration gradient and internal cell polarization, and thereby improving the stability and cycle life of rechargeable alkali metal batteries. Now, an ether‐functionalized anion (EFA) is used as a counter‐charge in a lithium salt. As the salt component in PEs, it achieves low anionic diffusivity but sufficient Li‐ion conductivity. The ethylene oxide unit in EFA endows nanosized self‐agglomeration of anions and trapping interactions between the anions and its structurally homologous matrix, poly(ethylene oxide), thus suppressing the mobility of negative charges. In contrast to previous strategies of using anion traps or tethering anions to a polymer/inorganic backbone, this work offers a facile and elegant methodology on accessing selective and efficient Li‐ion transport in PEs and related electrolyte materials (for example, composites and hybrid electrolytes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号