首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 654 毫秒
1.
We construct an iterated stochastic integral with respect to fractional Brownian motion (fBm) with H>1/2. The first integrand is a deterministic function, and each successive integral is with respect to an independent fBm. We show that this symmetric stochastic integral is equal to the Malliavin divergence integral. By a version of the Fourth Moment Theorem of Nualart and Peccati [10], we show that a family of such integrals converges in distribution to a scaled Brownian motion. An application is an approximation to the windings for a planar fBm, previously studied by Baudoin and Nualart [2].  相似文献   

2.
We study several properties of the sub-fractional Brownian motion (fBm) introduced by Bojdecki et al. related to those of the fBm. This process is a self-similar Gaussian process depending on a parameter H ∈ (0, 2) with non stationary increments and is a generalization of the Brownian motion (Bm).

The strong variation of the indefinite stochastic integral with respect to sub-fBm is also discussed.  相似文献   

3.
Given a fractional Brownian motion (fBm) with Hurst index H ? (0,1){H\in(0,1)} , we associate with this a special family of representations of Cuntz algebras related to frequency domains and wavelets. Vice versa, we consider a pair of Haar wavelets satisfying some compatibility conditions, and we construct the covariance functions of fBm with a fixed Hurst index. The Cuntz algebra representations enter the picture as filters of the associated wavelets. Extensions to q-dependent covariance functions leading to a corresponding fBm process will also be discussed.  相似文献   

4.
It is shown that under a certain condition on a semimartingale and a time-change, any stochastic integral driven by the time-changed semimartingale is a time-changed stochastic integral driven by the original semimartingale. As a direct consequence, a specialized form of the Itô formula is derived. When a standard Brownian motion is the original semimartingale, classical Itô stochastic differential equations driven by the Brownian motion with drift extend to a larger class of stochastic differential equations involving a time-change with continuous paths. A form of the general solution of linear equations in this new class is established, followed by consideration of some examples analogous to the classical equations. Through these examples, each coefficient of the stochastic differential equations in the new class is given meaning. The new feature is the coexistence of a usual drift term along with a term related to the time-change.  相似文献   

5.

Using the techniques of the Malliavin calculus and the properties of Gaussian processes, we prove that the paths of the indefinite Skorohod integral with respect to the fractional Brownian motion (fBm) with Hurst parameter less than 1/2 belongs to the Besov space B p , X H , for any p >(1/ H ).  相似文献   

6.
Stochastic calculus with respect to fractional Brownian motion (fBm) has attracted a lot of interest in recent years, motivated in particular by applications in finance and Internet traffic modeling. Multifractional Brownian motion (mBm) is an extension of fBm enabling to control the local regularity of the process. It is obtained by replacing the constant Hurst parameter H of fBm by a function h(t), thus allowing for a finer modelling of various phenomena.

In this work we extend to mBm the construction of the Wick–Itô stochastic integral with respect to fBm, as originally proposed in Bender (Stoch. Process. Appl. 104 (2003), pp. 81–106), Bender (Bernouilli 9(6) (2003), pp. 955–983), Biagini et al. (Proceedings of Royal Society, special issue on stochastic analysis and applications, 2004, pp. 347–372) and Elliott and Van der Hoek (Math. Finance 13(2) (2003), pp. 301–330). In that view, a multifractional white noise is defined and used to integrate with respect to mBm a large class of stochastic processes using Wick products. Itô formulas (both for tempered distributions and for functions with sub-exponential growth) are obtained, as well as a Tanaka Formula.  相似文献   

7.
In this paper we study the existence of a unique solution to a general class of Young delay differential equations driven by a H?lder continuous function with parameter greater that 1/2 via the Young integration setting. Then some estimates of the solution are obtained, which allow to show that the solution of a delay differential equation driven by a fractional Brownian motion (fBm) with Hurst parameter H>1/2 has a C ??-density. To this purpose, we use Malliavin calculus based on the Fréchet differentiability in the directions of the reproducing kernel Hilbert space associated with fBm.  相似文献   

8.
We prove a change of variable formula for the 2D fractional Brownian motion of index H bigger or equal to 1/4. For H strictly bigger than 1/4, our formula coincides with that obtained by using the rough paths theory. For H=1/4 (the more interesting case), there is an additional term that is a classical Wiener integral against an independent standard Brownian motion.  相似文献   

9.
We are concerned with the stationary distribution of a d-dimensional semimartingale reflecting Brownian motion on a nonnegative orthant, provided it is stable, and conjecture about the tail decay rate of its marginal distribution in an arbitrary direction. Due to recent studies, the conjecture is true for d=2. We show its validity for the skew symmetric case for a general d.  相似文献   

10.
The martingale part in the semimartingale decomposition of a Brownian motion with respect to an enlargement of its filtration, is an anticipative mapping of the given Brownian motion. In analogy to optimal transport theory, we define causal transport plans in the context of enlargement of filtrations, as the Kantorovich counterparts of the aforementioned non-adapted mappings. We provide a necessary and sufficient condition for a Brownian motion to remain a semimartingale in an enlarged filtration, in terms of certain minimization problems over sets of causal transport plans. The latter are also used in order to give robust transport-based estimates for the value of having additional information, as well as model sensitivity with respect to the reference measure, for the classical stochastic optimization problems of utility maximization and optimal stopping.  相似文献   

11.
We prove that for any second order stochastic process X with stationary increments with continuous paths and continuous variance function, there exists a tempered measure μ (for which we give an explicit expression) related with the domain of the Wiener integral with respect to X as follows: the space of tempered distributions f such that the Fourier transform of f is square integrable with respect to μ is always a dense subset of the domain of the Wiener integral. Moreover, we provide sufficient conditions on μ in order that the domain of the integral is exactly this space of distributions. We apply our results to the fractional Brownian motion. In particular, it is proved that the domain of the Wiener integral with respect to the fractional Brownian motion with Hurst parameter H>1/2 contains distributions that are not given by locally integrable functions, this fact was suggested by Pipiras and Taqqu (2000) in [5]. We have also considered the example of the process given by Ornstein and Uhlenbeck as a model for the position of a Brownian particle.  相似文献   

12.
Stochastic integration w.r.t. fractional Brownian motion (fBm) has raised strong interest in recent years, motivated in particular by applications in finance and Internet traffic modelling. Since fBm is not a semi-martingale, stochastic integration requires specific developments. Multifractional Brownian motion (mBm) generalizes fBm by letting the local Hölder exponent vary in time. This is useful in various areas, including financial modelling and biomedicine. The aim of this work is twofold: first, we prove that an mBm may be approximated in law by a sequence of “tangent” fBms. Second, using this approximation, we show how to construct stochastic integrals w.r.t. mBm by “transporting” corresponding integrals w.r.t. fBm. We illustrate our method on examples such as the Wick–Itô, Skorohod and pathwise integrals.  相似文献   

13.
The derivative of self-intersection local time (DSLT) for Brownian motion was introduced by Rosen (2005) and subsequently used by others to study the L2L2 and L3L3 moduli of continuity of Brownian local time. A version of the DSLT for fractional Brownian motion (fBm) was introduced in Yan et al. (2008); however, the definition given there presents difficulties, since it is motivated by an incorrect application of the fractional Itô formula. To rectify this, we introduce a modified DSLT for fBm and prove existence using an explicit Wiener chaos expansion. We will then argue that our modification is the natural version of the DSLT by rigorously proving the corresponding Tanaka formula. This formula corrects a formal identity given in both Rosen (2005) and Yan et al. (2008). In the course of this endeavor we prove a Fubini theorem for integrals with respect to fBm. The Fubini theorem may be of independent interest, as it generalizes (to Hida distributions) similar results previously seen in the literature. As a further byproduct of our investigation, we also provide a small correction to an important technical second-moment bound for fBm which has appeared in the literature many times.  相似文献   

14.
Summary We consider a class of reflecting Brownian motions on the non-negative orthant inR K . In the interior of the orthant, such a process behaves like Brownian motion with a constant covariance matrix and drift vector. At each of the (K-1)-dimensional faces that form the boundary of the orthant, the process reflects instantaneously in a direction that is constant over the face. We give a necessary condition for the process to have a certain semimartingale decomposition, and then show that the boundary processes appearing in this decomposition do not charge the set of times that the process is at the intersection of two or more faces. This boundary property plays an essential role in the derivation (performed in a separate work) of an analytical characterization of the stationary distributions of such semimartingale reflecting Brownian motions.Research performed in part while the second author was visiting the Institute for Mathematics and Its Applications with support provided by the National Science Foundation and the Air Force Office of Scientific Research. R.J. William's research was also supported in part by NSF Grant DMS 8319562.  相似文献   

15.
Functionals of Brownian motion can be dealt with by realizing them as functionals of white noise. Specifically, for quadratic functionals of Brownian motion, such a realization is a powerful tool to investigate them. There is a one-to-one correspondence between a quadratic functional of white noise and a symmetric L2(R2)-function which is considered as an integral kernel. By using well-known results on the integral operator we can study probabilistic properties of quadratic or certain exponential functionals of white noise. Two examples will illustrate their significance.  相似文献   

16.
In this paper we consider the problem of testing long memory for a continuous time process based on high frequency data. We provide two test statistics to distinguish between a semimartingale and a fractional integral process with jumps, where the integral is driven by a fractional Brownian motion with long memory. The small–sample performances of the statistics are evidenced by means of simulation studies. The real data analysis shows that the fractional integral process with jumps can capture the long memory of some financial data.  相似文献   

17.
Highly-aggregated traffic in communication networks is often modeled as fractional Brownian motion (fBm). This is justified by the theoretical result that the sum of a large number of on–off inputs, with either on-times or off-times having a heavy-tailed distribution with infinite variance, converges to fBm, after rescaling time appropriately. For performance analysis purposes, the key question is whether this convergence carries over to the stationary buffer content process. In this paper it is shown that, in a heavy-traffic queueing environment, this property indeed holds.  相似文献   

18.
In this article, we study the rate of convergence of the polygonal approximation to multiple stochastic integral Sp (f) of fractional Brownian motion of Hurst parameter H 〈 1/2 when the fractional Brownian motion is replaced by its polygonal approximation. Under different conditions on f and for different p, we obtain different rates.  相似文献   

19.
We find an explicit expression for the cross-covariance between stochastic integral processes with respect to a d-dimensional fractional Brownian motion (fBm) Bt with Hurst parameter H>12, where the integrands are vector fields applied to Bt. It provides, for example, a direct alternative proof of Y. Hu and D. Nualart’s result that the stochastic integral component in the fractional Bessel process decomposition is not itself a fractional Brownian motion.  相似文献   

20.
We study the convergence to the multiple Wiener-Itô integral from processes with absolutely continuous paths. More precisely, consider a family of processes, with paths in the Cameron-Martin space, that converges weakly to a standard Brownian motion in C0([0,T]). Using these processes, we construct a family that converges weakly, in the sense of the finite dimensional distributions, to the multiple Wiener-Itô integral process of a function fL2(n[0,T]). We prove also the weak convergence in the space C0([0,T]) to the second-order integral for two important families of processes that converge to a standard Brownian motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号