首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In processes aimed at the fractionation of a multi-component feed stream, transmission of particles through the membrane is at least as important as retention of larger particles. In this paper, we describe the mechanisms of transmission of mono-disperse latex particles through a polymer membrane. The effects of process parameters, such as transmembrane pressure, cross flow velocity and feed concentration were investigated. In dead end filtration mode, we found that, depending on the transmembrane pressure, four particle transmission regimes could be distinguished.

Particle deposition on polymer membranes and polymer microsieves was investigated in-line with confocal scanning laser microscopy (CSLM). It was observed that with the polymer membrane random depth deposition took place, while the microsieve exhibited in-pore fouling.

In addition, bi-disperse particle suspensions were fractionated with dead end and cross flow membrane filtration, and various effects were charted. Based on the phenomena observed, it is concluded that the design of a fractionation process starts with defining a stable transmission regime for small particles, and subsequently choosing the process conditions for minimal deposition of the larger particles.  相似文献   


2.
A membrane support provides mechanical strength to a membrane top layer to withstand the stress induced by the pressure difference applied over the entire membrane and must simultaneously have a low resistance to the filtrate flow. In this paper an experimental and a theoretical approach toward the design of a ceramic membrane support are combined. In the experimental part, the influence of the particle size, sintering time and sintering temperature on the permeability and strength of supports made by colloidal processing of submicron-sized alumina powders is investigated and compared with dry-pressed samples. In the theoretical part, a condensed expert system is set up that comprises the main relations necessary to describe the maximum filtrate flow of an incompressible fluid through a multilayered tubular inorganic membrane. The model can be adapted to describe other geometries and fluids. From calculations it becomes clear that optimum values exist for the dimensions and material properties of the support. Hence, support design is not straightforward and needs a comprehensive approach incorporating simultaneously all relevant design characteristics.  相似文献   

3.
Inkjet printing is employed to apply a mechanically stable reinforcing pattern to polymeric microsieves prepared by float casting, where particles are used as molds for the pores. A mixture of silica particles and nonvolatile monomers is cast onto a water surface and subsequently photopolymerized to produce membranes consisting of a polymer film with embedded particles. These composite membranes are transferred onto an aluminum foil. Subsequently, a UV-curable ink is directly inkjet-printed onto the membranes in line patterns of grids or honeycombs and cured by UV radiation to create a mechanically reinforcing pattern. Afterwards, the particles and the aluminum foil are removed by chemical etching. The reinforcing pattern overcasts 40% of the previously manufactured membrane, is mechanically stable, and gives the microsieves such a robustness that they can be handled in further manufacturing processes.  相似文献   

4.
The influence of the surface properties of chemically modified silicon nitride microsieves on the filtration of protein solutions and defatted milk is described in this research. Prior to membrane filtrations, an antifouling polymer based on poly(ethylene glycol), poly(TMSMA-r-PEGMA) was synthesized and applied on silicon-based surfaces like silicon, silicon nitride, and glass. The ability of such coating to repel proteins like bovine serum albumin (BSA) was confirmed by ellipsometry and confocal fluorescence microscopy. In BSA and skimmed milk filtrations no differences could be seen between unmodified and PEG-coated membranes (decreasing permeability in time). On the other hand, reduced fouling was observed with PEG-modified microsieves in combination with backpulsing and air sparging.  相似文献   

5.
We use two-dimensional Brownian dynamics simulations to study the electrophoresis of a bead-rod chain through a narrow slit. A constant electric field is assumed to act inside and outside of the slit, and each bead on the chain is assigned a constant uniform charge. We calculate the dependence of the polymer transit velocity on chain length, slit dimensions (width-to-length ratio), and electric-field strength. For sufficiently narrow slits, the transit velocity increases nonlinearly with the applied field for low-field strengths, whereas it increases linearly for high-field strengths. In the low-field strength region and for sufficiently narrow slits, the transit velocity decreases rapidly for small chain lengths and then decreases slowly beyond a critical chain length. As the slit width increases, the transit velocity decreases with chain length in more continuous manner, and for sufficiently large slits the transit velocity becomes independent of chain length as expected. Distributions of the chain end-to-end distances and the translocation times depend strongly on the relative size of the chain to the slit. These results show the sensitivity of the transit velocity vs chain length relationship to the slit dimensions and applied electric-field strength, and suggest that there may be an optimal slit width for a given field strength and vice versa. The results may be useful for microfluidic separations and for understanding the motion of biological polymers through narrow constrictions.  相似文献   

6.
A hybrid coagulation–ultrafiltration process has been investigated to understand membrane performance. Coagulation prior to ultrafiltration is suspected to reduce fouling by decreasing cake resistance, limiting pore blockage and increasing backwash efficiency. Coagulation followed by tangential ultrafiltration should gather the beneficial effects of particle growth and cross-flow velocity. Our study aims at determining the key parameters to improve membrane performance, by describing floc behaviour during the hollow fibre ultrafiltration process. Flocs encounter a wide range of shear stresses that are reproduced through the utilization of different coagulation reactors. Performing a Jar-test enables the formation of flocs under soft conditions, whereas Taylor-Couette reactors can create the same shear stresses occurring in the hollow fibres or in the pump. Synthetic raw water was made by adding bentonite into tap water. Five organic coagulants (cationic polyelectrolytes) and ferric chloride were selected. Floc growth was thoroughly monitored in the different reactors by laser granulometry. Coagulation–ultrafiltration experiments revealed different process performance. The effect on the permeate flux depended on the coagulant used: some coagulants have no influence on permeate flux, another enables a 20% increase in permeate flux whereas another coagulant leads to a decrease of 50%. Flocs formed with ferric chloride do not resist shear stress and consequently have no influence on permeate flux. These results show the necessity to create large flocs, but the size is not sufficient to explain membrane performance. Even if flocs show a good resistance to shear stress, a high compactness (Df = 3) will lead to a dramatic decrease of permeate flux by increasing the mass transfer resistance of the cake. On the contrary, flocs less resistant to shear stress, then smaller and also more open have no effect on permeate flux. An optimum was quantified for large flocs, resistant enough to shear stress facilitating flow between aggregates.  相似文献   

7.
Rutin is a bioactive compound that possesses anti-tumor activities through triggering apoptosis. Triple-negative breast cancer (TNBC) is insensitive to targeted anti-tumoral drugs, and drug resistance in TNBC poses a challenge for a successful cure. The accumulation of misfolded proteins in the lumen of the endoplasmic reticulum (ER) results in cellular stress that initiates a specialized response designated as the unfolded protein response. This study aimed to find potential ER stress targets in triple-negative breast cancer. The viability of cells was evaluated using an MTT assay. Cell migration and proliferation were done by wound scratch and colony formation assay. Cell cycle detection, measurement of ER stress, mitochondrial membrane potential disruption, and cell death identification was performed using flow cytometry. The interaction of rutin with ER stress proteins is predicted using in silico docking. The pattern of gene expression was determined by qRT-PCR. The elevated rate of cell viability, cell cycle arrest, ER stress, MMP, and apoptotic induction was observed in combination treatment. Rutin exhibited the highest glide score with ASK1 and JNK. The results of qRT-PCR showed that rutin induced apoptosis through upregulation of ASK1 and JNK. The present study provides strong evidence supporting an important role of the ER stress response in mediating rutin-induced apoptosis in triple-negative breast cancer.  相似文献   

8.
When transport-efficient membrane modules (such as those where the liquid flows outside hollow fibre membranes) or membranes with prolonged resistance to wetting are used for the oxygenation of blood or other cell suspensions, membrane contribution to the overall oxygen transfer resistance into the liquid may become significant. Thus, estimation of membrane diffusive permeability towards relevant gases (e.g., oxygen) is important to develop new membranes and to ensure reproducible commercial membrane performance.

In this paper, we report on a turbulent flow technique for the estimation of the oxygen diffusive permeability of membranes used in outside-flow oxygenators. Water is re-circulated under turbulent flow conditions in a closed-loop from a reservoir to the shell of lab-scale membrane modules. The overall oxygen transfer to water coefficient is estimated at increasing water flow rates from the time the change of dissolved oxygen tension in the stream leaving the water reservoir occurs. Oxygen diffusive permeability is estimated as the reciprocal overall transfer resistance at infinitely high water flow rates, for negligible gas-side oxygen transport resistance. The technique was used to estimate oxygen diffusive permeability of commercial Oxyphan® polypropylene membranes for blood oxygenation and of two laboratory polypropylene membranes, the one featuring a microporous wall structure with smaller-than-standard pore size, the other featuring an outer thin, dense layer supported by a thick spongy layer. The turbulent flow technique yields oxygen diffusive permeability estimates consistent both with membrane hydraulic permeability towards gaseous nitrogen, membrane wall structure, and with values in literature obtained using a liquid reactive with oxygen, but without the complications associated with reaction and physical transport kinetic characterisation. We conclude that the turbulent flow technique is a useful tool in the development and quality control of membranes for the oxygenation of blood and other cell suspensions.  相似文献   


9.
The capability to maintain a constant system temperature is vital in nature, since it endows the system with enhanced lifetime. This trait also works for zinc-based batteries, because their cycle-life is limited by notorious zinc dendrite/accumulation, which are highly affected by the inhomogeneous distribution of temperature on electrode and relatively low mechanical strength of membrane. Herein, boron nitride nanosheets (BNNSs) with high mechanical strength serving as heat-porter are introduced onto a porous substrate to enable uniform deposition of zinc and further a zinc-based flow battery with long-cycle life. The results indicate that BNNSs can effectively adjust the deposited zinc from needle-like to French fries-like morphology, thus affording the battery with a stable performance for nearly 500 cycles at 80 mA cm−2. Most importantly, an energy efficiency of above 80 % can be obtained even at 200 mA cm−2, which is by far the highest value ever reported among zinc-based flow batteries.  相似文献   

10.
The rheological properties of bentonite clay-filled aqueous solutions of high-molecular-mass poly(ethylene oxide) (PEO) have been studied. The PEO solution is a typical polymer solution characterized by the highest Newtonian viscosity and the range of non-Newtonian flow. The addition of small amounts of bentonite to the PEO solution causes passage to a viscoplastic behavior that manifests itself as the appearance of the yield stress. Therewith, the flow at the highest Newtonian viscosity in the region of low shear stresses (rather than rates) remains possible. After passing through the yield stress, the effect of antithixotropy, i.e., an increase in the viscosity with the deformation rate in a certain shear rate region, has been observed for the multicomponent systems. The data obtained have been interpreted assuming that the addition of the solid filler to the polymer solution destroys the random network of entanglements between macromolecules, while the presence of the polymer in the clay suspension reduces the strength of the coagulation structure of bentonite.  相似文献   

11.
系统研究了α-胰凝乳蛋白酶、木瓜蛋白酶、枯草杆菌蛋白酶和嗜热杆菌蛋白酶4种蛋白水解酶在一系列分子筛上的吸附固定. 所用分子筛载体包括微孔分子筛: HY、NaY、NH4Y、MCM-22、Hβ沸石, 改性Y沸石: HDAY、HNH4DAY以及介孔分子筛MCM-41. 结果表明, 不仅分子筛的结构与酶的性质对酶的固定化量与固定化酶的活性有重要影响, 而且吸附固定化条件如缓冲液的pH值和酶的浓度等对酶的吸附固定化也有显著影响. 在多数情况下, pH值为6时蛋白水解酶在分子筛上的吸附固定化的量较高, 随着pH值进一步升高吸附量降低. 探讨了蛋白水解酶与不同分子筛之间的相互作用, 例如α-胰凝乳蛋白酶在Hβ沸石上吸附固定化量最高, 而固定在MCM-22上的α-胰凝乳蛋白酶的活性最高, 这显然与其吸附状态有关.  相似文献   

12.
The capability to maintain a constant system temperature is vital in nature, since it endows the system with enhanced lifetime. This trait also works for zinc‐based batteries, because their cycle‐life is limited by notorious zinc dendrite/accumulation, which are highly affected by the inhomogeneous distribution of temperature on electrode and relatively low mechanical strength of membrane. Herein, boron nitride nanosheets (BNNSs) with high mechanical strength serving as heat‐porter are introduced onto a porous substrate to enable uniform deposition of zinc and further a zinc‐based flow battery with long‐cycle life. The results indicate that BNNSs can effectively adjust the deposited zinc from needle‐like to French fries‐like morphology, thus affording the battery with a stable performance for nearly 500 cycles at 80 mA cm?2. Most importantly, an energy efficiency of above 80 % can be obtained even at 200 mA cm?2, which is by far the highest value ever reported among zinc‐based flow batteries.  相似文献   

13.
New ceramic membranes from calcinated clay. The aim of the present work is to obtain porous tubular ceramic membranes from natural material. The clay powders were calcinated in air at 900 °C for two hours. The resulting powders mixed with certain organic additives could be extruded to fabricate a porous tubular configuration with highly uniform porous structures. The mean pore diameter, measured by mercury porosimetry, is equal to 9 μm and the porosity is 38% (heat treatment at 1130 °C for two hours). Many ceramic membrane manufactures have used this type of large-pore membrane as supports for finer-pore membranes (microfiltration or ultrafiltration). Porous membranes possess very good mechanical strength and negligible flow resistance for the membrane/support, while containing pores which allow a high degree of permeation.  相似文献   

14.
A constricted slit model was introduced to improve, one step further, the performance of the simple slit model in prediction of the adsorption and diffusion behavior of simple molecules in the nanoporous carbons (NPCs). The grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations are performed to study the adsorption and diffusion behavior of methane within the constricted slit models. The models are called slit-1, 2, and 3 with constriction heights 5, 7, and 9 Å respectively. For comparison, we used the slit-0 name for the simple slit without constriction. Adsorption results show that at low pressures, the constriction increases the adsorbed amount irrespective of its height. Slit-2 with a constriction height as a molecular diameter has the greatest heat of adsorption and has highest loading at pressures up to 3,000 kPa. At high pressures, when all pores are filled, the adsorption trend is in line with the pore volumes of slits where slit-0 with higher pore volume is dominant. The density profiles in the models were calculated and examined. The spatial distribution of adsorbed methane molecules was examined by various radial distribution functions calculated by MD. Also, MD simulation results show that the diffusion coefficient of methane decreases in constricted slits. The calculated diffusion coefficients in slit-2 in the direction of the constriction are one order of magnitude smaller than the calculated one in the simple slit model but it is far from the experimental values in the NPCs.  相似文献   

15.
The modification of surfaces of solid-state potentiometric surfactant sensors with nanofiltration membranes (molecular sieves) with different diameters allows the detection of homologues of anionic, cationic, and nonionic surfactants. The quantitative characteristics of the membrane transport (permeability and ion flow) and the separating ability of plasticized polyvinyl chloride molecular sieves are evaluated. The permeabilities of nanofiltration membranes and ion flows through them depend on the nature of the blowing agent and the nature and concentration of the surfactants in the contacting solutions whose variation allows the separation of homologues of sodium alkyl sulfates, alkylpyridinium chlorides, and polyethoxylated nonylphenols in multicomponent mixtures.  相似文献   

16.
Lithium uptake in fixed-pH solution by ion sieves   总被引:1,自引:0,他引:1  
In this study, Li(+) uptake by ion sieves was studied in a fixed-pH aqueous phase using a pH 8.0 buffer solution of ammonia/ammonium chloride. Two different spinel-type manganese oxide ion sieves were used to investigate the effect of intrinsic properties of ion sieves on Li(+) uptake. The effect of ionic strength was also considered for potential recovery of lithium from seawater and brine. The results of Li(+) uptake indicated that the sorption isotherms fit the Langmuir model well. The uptake was found to obey a pseudo-second-order rate. The thermodynamic parameters, DeltaG(0), DeltaH(0), and DeltaS(0), were calculated, and the results indicated that the Li(+) uptake by both ion sieves was endothermic. The influence of ionic strength was mainly found on the kinetics of Li(+) uptake. Moreover, the global reaction rate is probably controlled by both intraparticle diffusion and boundary layer diffusion, and the extent of control is greater for intraparticle diffusion than for boundary layer diffusion for Sieve-1; the reverse is for Sieve-2. Finally, Sieve-2, with high H content and small grain size, was proposed as a more suitable absorbent for recovery of lithium from seawater or brine.  相似文献   

17.
 合成了AlPO-11,SAPO-11及其含杂原子Co或Mn的磷铝系列分子筛.XRD结果证实,合成产物均具有AEL分子筛晶体结构.用X射线荧光光谱测定了晶体的元素组成,并用NH3-TPD考察了样品的酸性和酸分布.在以合成的分子筛为基质所制备的催化剂上进行了丁烷异构化和一步异构脱氢反应.结果表明,载0.3%Pd的SAPO-11分子筛催化剂具有最高的丁烷异构化选择性,而在丁烷一步异构脱氢反应中,含金属杂原子的催化剂具有更高的异丁烯选择性.  相似文献   

18.
Vertical alignment (VA) is a widely applied operation mode for liquid crystal displays. To achieve optimum brightness, the electrode of VA is often patterned with fish-bone fine slits to generate fringe field, so the negative liquid crystal aligns along the fine slits when the electric field is applied. VA is usually simply modelled by the bend geometry along the cell gap. However, defects, domain boundaries and periodical splay induced by the fine slits also exist in real pixels and disturb the liquid crystal alignment. Polymer-stabilised VA test cells with various fine slit pitches which lead to various strength of fringe field were fabricated to observe the deformation of liquid crystal. Then the models of liquid crystal deformation nearby the defects and in the fine slit area were proposed to calculate the electromagnetic (fEM) and elastic free energy (felastic). The results show that the key factor to regulate fEM and felastic is the pitch of the fine slits, and the optimum liquid crystal alignment is obtained when fEM and felastic are equal. The models are useful for further investigation on the dynamics of liquid crystal alignment and applications in industrial products.  相似文献   

19.
20.
SAPO-34和SAPO-44分子筛上吸附甲醇的TPSR-MS研究   总被引:5,自引:0,他引:5  
 采用程序升温表面反应-质谱(TPSR-MS)和程序升温脱附(TPD)技术考察了SAPO-34和SAPO-44分子筛表面的酸性与其催化甲醇转化为低碳烯烃性能的关系. 结果表明,SAPO分子筛表面存在两种活性中心,这两种活性中心与分子筛表面不同的酸性中心相对应. 表面吸附的甲醇在不同强度的酸性中心上进行不同的反应,在弱酸中心上主要进行甲醇脱水生成二甲醚的反应,在强酸中心上主要进行二甲醚进一步转化为低碳烯烃的反应. 同时,探讨了SAPO分子筛表面的酸强度对低碳烯烃生成温度的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号