首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low plutonium content acidic waste is generated in nuclear chemical facilities. Study was initiated to develop hollow fiber supported liquid membrane (HFSLM) technique for quantitative separation and recovery of plutonium (Pu) from such wastes using tri-n-butyle phosphate (TBP) in dodecane as carrier. Hollow fiber test module was fabricated using 20 lumens of 33.91 cm2 surface area and 9 cm length. After satisfactory testing of the hydrodynamic condition of the module, it was operated at a flow rate of 3 ml min−1 on recycling mode with acidic waste solution containing Pu=8 mg dm−3, uranium=15 dm−3, gross β=49.33 mCi dm−3, gross γ=15.73 mCi dm−3 and acidity 3 M HNO3. In presence of various fission products, selective permeation of Pu(IV) through the bundle of hollow fiber test module was observed to be more than 90% into a stripping phase consisting 0.1 M NH2OH·HCl in 0.3 M HNO3. A model is presented to describe the transport mechanism and to evaluate the mass transfer coefficient. The radiation stability was also tested by exposing the membrane upto irradiation level of 1 M rad. Potentiality of the method for the selective separation of plutonium from acidic waste is, thus, clearly seen.  相似文献   

2.
In a cation exchange liquid membrane-aqueous alkali metal chloride system, diffusional flux of alkali metal ion driven by proton was observed. A supported liquid membrane formed on a Teflon filter by impregnating it with stearic acid-doped 1-octanol was used. The internal aqueous phase contained KCl and HCl, and the external aqueous phase also contained KCl. The initial concentrations of K+ ions of both phases were 1×10−1 mol dm−3 for all the measurements. The concentration of HCl in the internal solution was kept at 1×10−2 mol dm−3. The pH of the external solution was changed successively with HCl, appropriate buffer solution, or KOH. The pH dependence of membrane potential showed hysteresis loop in the range from neutral to alkaline pH, where reverse ion permeation was observed after the flux had been measured in the system with the external solution of an alkaline pH (pH 13). In the acidic range below neutral pH, the hysteresis of the membrane potential as well as reverse ion permeation was not observed. To elucidate the correlation between the appearance of hysteresis loop and the reverse ion permeation driven by proton across the membrane, the time course of the membrane potential in response to pH change was investigated. In the pH range where reverse permeation phenomena appeared, the time dependence of the membrane potential in nonsteady-state showed biphasic behavior. From the time course curve of the membrane potential, the total membrane potential was divided into the Donnan potential and the diffusion potential. From these findings, it was demonstrated that the diffusion potential was generated within the membrane only in the alkaline range where reverse ion permeation occurred. Analyzing the diffusional flux, the diffusion coefficient of potassium ion in the membrane was obtained taking the Donnan potential into account to be much greater than that in the membrane solvent. As a result of comparison of the diffusional fluxes measured by atomic absorption spectrometry and solution conductometry, the flux of the potassium ion was found to be significantly greater than that of the hydrogen ion in the opposite direction, especially at extremely high pH region. This implies the flows of hydroxide ions and neutralization reaction within the membrane facilitate the reverse ion permeation process of potassium ions.  相似文献   

3.
Hybrid membranes were prepared using poly(vinyl alcohol) (PVA) and tetraethylorthosilicate (TEOS) via hydrolysis followed by condensation. The obtained membranes were characterized by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction and differential scanning calorimetry. The remarkable decrease in degree of swelling was observed with increasing TEOS content in membranes and is attributed to the formation of hydrogen and covalent bonds in the membrane matrix. The pervaporation performance of these membranes for the separation of water–acetic acid mixtures was investigated in terms of feed concentration and the content of TEOS used as crosslinking agent. The membrane containing 1:2 mass ratio of PVA and TEOS gave the highest separation selectivity of 1116 with a flux of 3.33 × 10−2 kg/m2 h at 30 °C for 10 mass% of water in the feed. Except for membrane M-1, the observed values of water flux are close to the values of total flux in the investigated composition range, signifying that the developed membranes are highly water selective. From the temperature dependence of diffusion and permeation values, the Arrhenius apparent activation parameters have been estimated. The resulting activation energy values, obtained for water permeation being lower than those of acetic acid permeation values, suggest that the membranes have higher separation efficiency. The activation energy values calculated for total permeation and water permeation are close to each other for all the membranes except membrane M-1, signifying that coupled-transport is minimal as due to higher selective nature of membranes. Further, the activation energy values for permeation of water and diffusion of water are almost equivalent, suggesting that both diffusion and permeation contribute almost equally to the pervaporation process. The negative heat of sorption values (ΔHs) for water in all the membranes suggests the Langmuir's mode of sorption.  相似文献   

4.
Glycerol-based liquid membranes immobilized in the pores of hydrophilic microporous hollow fibers have been studied for selective separation of CO2 from a mixed gas (CO2, N2) feed having low concentrations of CO2 characteristic of gases encountered in space walk and space cabin atmosphere. The immobilized liquid membranes (ILMs) investigated consist of sodium carbonate–glycerol or glycine-Na–glycerol solution. Based on the performances of such liquid membranes in flat hydrophilic porous substrates [Chen et al., Ind. Eng. Chem. Res. 38 (1999) 3489; Chen et al., Ind. Eng. Chem. Res. 39 (2000) 2447], hollow fiber-based ILMs were studied at selected CO2 partial pressure differentials (ΔpCO2 range 0.36–0.50 cmHg), relative humidities (RH range 45–100%), as well as carrier concentrations. The sodium carbonate concentration was primarily 1.0 mol/dm3; the glycine-Na concentration was 3.0 mol/dm3. The sweep gas was always dry helium and it flowed on the shell side. Very high CO2/N2 selectivities were observed with porous polysulfone microfiltration membranes as substrate. As in the case of flat film-based ILMs (see references above), feed side RH is an important factor determining the ILM performances. Generally, lower permeances and greater CO2/N2 selectivity values were observed at lower feed stream RHs. When the feed side average RH=60%, pCO2,f=0.005 atm and glycine-Na concentration was 3.0 M, the CO2/N2 separation factor observed was over 5000. Prolonged runs lasting for 300 h showed that the hollow fiber-based ILM permeation performances were stable.  相似文献   

5.
Non-dispersive extraction of Zn(II) and Cu(II) from single and binary solutions across a flat-sheet membrane to an organic solution containing di(2-ethylhexyl)phosphoric acid (D2EHPA) was studied. Hydrophilic microporous and cation exchange membranes were used. Experiments were performed as a function of the pH (2–6), metal concentration (0.31–3.13 mol/m3), and D2EHPA concentration (50–500 mol/m3). It was shown that the presence of one metal retarded the transport of the other. Compared to the hydrophilic microporous membrane, the cation exchange membrane gave a low extraction rate of both metals in either single or binary systems, but gave a higher selectivity of Zn(II) over Cu(II) in binary systems at high D2EHPA concentrations.  相似文献   

6.
The membrane aromatic recovery system (MARS) is a new membrane technology which recovers aromatic acids and bases. The first industrial installation has been operating at a Degussa site in the UK recovering cresols since 2002. The state of the art MARS technology employs a tubular silicone rubber membrane. However, this places some limitations on the process due to relatively low mass transfer rates and limited chemical resistance.In this paper, flat sheet composite membranes were investigated for application to the MARS process. In particular for recovery of compounds, such as 1,2-benzisothiazolin-3-one (BIT) which show low mass transfer rates through the current membrane. These composite membranes are comprised of a thin nonporous PDMS selective layer coated on a microporous support layer cast from polyacrylonitrile, polyvinylidene fluoride, polyetherimide or polyphenylenesulphone. The membranes have been characterised using SEM and gas permeation. The mass transfer of BIT through the composite membranes with no chemical reaction enhancement was an order of magnitude higher than through tubular silicone rubber membranes (10−7 m s−1 versus 10−8 m s−1). With chemical reaction enhancement, the mass transfer increased by another order of magnitude to 1.6 × 10−6 m s−1 for BIT through a PVDF supported composite membrane. Mass transfer through the composite membrane was described well using analysis based on the resistance in series theory with chemical reaction. However, when a high osmotic pressure was applied across the membrane (molarity  3 M), significant water transport occurred across the membrane.  相似文献   

7.
We present a simple method for measuring Henry’s constant kHof ethanol using photoacoustic spectroscopy. At T =  298.1 K the measured value forkH is (0.877  ±  0.039)kPa · kg · mol  1. Our data show that Henry’s law is valid at ethanol molalities between 0.1mol · kg  1 and 1.4 mol · kg  1. The temperature dependence of Henry’s constant was carefully examined by measuring the ethanol vapour pressure of six different aqueous solutions between T =  273.1 K and T =  298.1 K. By analysing the gas phase concentration and applying Henry’s law, an ethanol molality of 0.864 mol · kg  1in the liquid phase can be measured with an error of  ± 0.038mol · kg  1. The detection limit of the photoacoustic sensor is a gaseous ethanol pressure of 10  3kPa. Ethanol molality changes as low as 1.10  3mol · kg  1can be measured.  相似文献   

8.
The osmotic coefficients of aqueous calcium chloride solutions were experimentally determined atT =  313.15 K by the isopiestic method. Magnesium chloride served as the isopiestic standard for the calculation of osmotic coefficients. The molality range covered in this study correspond to about 0.1mol · kg  1to 3.0mol · kg  1. In addition, the osmotic coefficients of aqueous mixtures of calcium chloride and magnesium chloride were determined over the range of ionic strength levels of about 0.1mol · kg  1to 9mol · kg  1and at various mole fractions. The results obtained were correlated by the Pitzer equation.  相似文献   

9.
In this paper, carbon nitride nanotubes (CNNTs) have been synthesized with porous anodic aluminum oxide membrane as template by the thermal polymerization of sol–gel precursors for the first time. Field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, elemental analysis and X-ray photoelectron spectroscopy were applied to characterize the morphology and composition of the as-prepared nanotubes. The electrocatalytic activity and stability of CNNTs, towards methanol electrooxidation in 0.5 mol/dm3 H2SO4 solutions containing 1 mol/dm3 CH3OH are presented at room temperature.  相似文献   

10.
The extraction of Cu2+ ions from sulfate solutions across a hollow-fiber membrane containing LIX64N carriers dissolved in kerosene has been studied, in which Cu(II) was then back-extracted to a stripping-phase containing HCl. Experiments were conducted as a function of the initial feed concentration of Cu2+ (1–10 mol/m3), feed pH (2–6), the carrier concentration (0.1–0.4 mol/dm3), and stripping acidity (0.4–4 mol/dm3). A mass-transfer model was developed to predict the extent of Cu2+ extraction from aqueous feed in hollow-fiber contactors. The calculated time profiles of Cu2+ concentrations were in reasonable agreement with the experimental data (average standard deviation 9% in both extraction and back-extraction modules). The rate-controlling step(s) of such dispersion-free extraction processes were identified. It was shown that the extraction was governed by combined interfacial reaction and aqueous diffusion under the ranges studied, whereas the back-extraction was limited by combined membrane diffusion and aqueous diffusion.  相似文献   

11.
The fabrication process is described of supported microporous Si3N4 membranes, prepared by pyrolytically decomposing organo-substituted polysilazane precursor. The membrane had a composite asymmetric structure consisting of a mechanically strong porous Si3N4 support which had 42 vol% pores between 0.4 and 0.52 μm, coated with an intermediate and one or two thin active top layers. The individual layers were fabricated by the conventional dip-coating technique.Permeation experiments with He, N2 and CO2 have been performed to determine the gas transport characteristics and separation performance of the processed membranes. The permeation is pressure-independent, indicating no viscous flow in the supported top layer. The proposed process has made it possible to prepare membranes with He permeation rates of ≥5.3×10−6 mol m−2 s−1 Pa−1 and He/N2 permselectivities of ≥2.0, even in the membrane with one top layer. It is also demonstrated from separation experiments, that the membrane with high quality top layer has the separation factors of 4.7 for He/N2 and of the theoretical of Knudsen flow for CO2/N2.  相似文献   

12.
The dependence of oxygen permeability of dense La0.3Sr0.7CoO3−δ ceramics on membrane thickness indicates significant surface exchange limitations to the permeation fluxes, which suggests a possibility to increase membrane performance by surface activation. The cobaltite membranes with various porous layers applied onto the permeate-side surface were tested at 850–1120 K. Silver-modified La0.3Sr0.7CoO3−δ membranes showed enhanced permeation at temperatures above 950 K; deposition of porous layers of PrOx and Pr0.7Sr0.3CoO3−δ had no positive effect. The maximum oxygen permeability at 850–1120 K was observed in the case of porous La0.3Sr0.7CoO3−δ layers with surface density about 10 mg cm−2. These results suggest that the surface exchange of lanthanum–strontium cobaltite membranes under an oxygen chemical potential gradient is limited by both oxygen sorption at the surface and ion diffusion through the surface oxide layers. Oxygen permeability of La0.3Sr0.7CoO3−δ ceramics was found to increase with increasing grain size due to decreasing grain-boundary resistance to ionic transport.  相似文献   

13.
The mean activity coefficients of NaCl in (sodium chloride  +  sodium bicarbonate  +  water) were determined experimentally in the temperature range 293.15 K to 308.15 K at four NaHCO3molality fractions (0.1, 0.3, 0.5, and 0.7). The measurements were made with an electrochemical cell, using a Na + glass ion-selective electrode and a Cl  solid-state ion-selective electrode. The experimental values reported by Butler and Huston are found to be higher than those calculated from the Pitzer equation using the existing parameters while the experimental results of this work are close to the calculated values, up to an NaHCO3molality fraction of 0.5. At the NaHCO3molality fraction of 0.7, the experimental data are much lower than the calculated values, implying that the interference of HCO3  on the Na + glass ion-selective electrode can only be neglected up to a molality fraction of NaHCO3of 0.5, an observation which is consistent with that of Butler and Huston.  相似文献   

14.
The effects of the preparation conditions in a dip coating process on polyimide composite membranes have been investigated. Polyimide precursor obtained from pyromellitic dianhidride (PMDA) and 4,4′-oxydianiline (ODA) was mixed with triethylamine and poly(amic acid)tri-ethylamine salt (PAA salt) was made. An asymmetric polyimide membrane (PI-2080) as a supporting membrane was dipped in a PAA salt (concentration 0–5 wt.%) methanol solution. The coating layers of PAA salt were converted to these of polyimide by annealing at 200°C for 3 h in an ordinary vacuum oven.The performance of the polyimide composite membrane was evaluated by gas permeation (N2, O2, CO2, at 1 kg/cm2) and pervaporation (feed: a 95 vol.% ethanol aqueous solution at 30–60°C). The composite membranes prepared using a coating solution of 5 wt.% PAA salt showed the CO2/N2 selectivity of over 25 on gas permeation, and separation factor α (H2O/EtOH) of over 800 with a total flux of 0.21 kg/m2 h on pervaporation.  相似文献   

15.
Electrochemical lithium intercalation within graphite from 1 mol dm 3 solution of LiClO4 in propylene carbonate (PC) was investigated at 25 and − 15 °C. Lithium ions were intercalated into and de-intercalated from graphite reversibly at − 15 °C despite the use of pure PC as the solvent. However, ceaseless solvent decomposition and intense exfoliation of graphene layers occurred at 25 °C. The results of the Raman spectroscopic analysis indicated that the interaction between PC molecules and lithium ions became weaker at − 15 °C by chemical exchange effects, which suggested that the thermodynamic stability of the solvated lithium ions was an important factor that determined the formation of a solid electrolyte interface (SEI) in PC-based solutions. Charge–discharge analysis revealed that the nature of the SEI formed at − 15 °C in 1 mol dm 3 of LiClO4 in PC was significantly different from that formed at 25 °C in 1 mol dm 3 of LiClO4 in PC containing vinylene carbonate, 3.27 mol kg 1 of LiClO4 in PC, and 1 mol dm 3 of LiClO4 in ethylene carbonate.  相似文献   

16.
A porous hollow-fiber membrane containing an iminodiethanol (IDE) group as the chelate-forming group was applied to the recovery of antimony in the permeation mode. An antimony solution was forced to permeate through the pores of the chelating porous hollow-fiber membrane, driven by a transmembrane pressure. The membrane with a thickness of 0.7 mm and a porosity of 70% had an iminodiethanol group of 1.6 mol/kg of the membrane and a water flux of 0.95 m/h at 0.1 MPa and 298 K. The breakthrough curves of antimony overlapped irrespective of the permeation rate of the antimony solution ranging from 2 to 20 ml/min, i.e. the residence time across the membrane thickness ranging from 3.4 to 0.34 s, because of negligible diffusional mass-transfer resistance of the ionic species of antimony to the iminodiethanol group. At antimony concentrations below 10 mg/l (pH 4.0), a linear adsorption isotherm was obtained. The adsorbed antimony was quantitatively eluted by permeation of 2 M hydrochloric acid through the pores of the membrane.  相似文献   

17.
Chemical vapor deposition (CVD) was used to modify 4 nm pore, sol–gel derived, γ-alumina membranes supported on macroporous α-alumina. Aluminum oxide was deposited in the pores of the γ-alumina membrane by alternating additions of trimethylaluminum (TMA) and water vapor. By reducing the pore size, the permeance of non-condensable gasses was reduced much more than the permeance of condensable gasses due to capillary condensation or preference adsorption of water vapor. The modified membrane that exhibited the best separation properties had a water vapor permeance ranging from 1.5×10−6 to 3.0×10−7 mol/m2 s Pa, an oxygen permeance ranging from 1.7×10−7 to 1.5×10−9 mol/m2 s Pa, and a separation factor as high as 140 at room temperature. The microstructure of the pores contained some irregularities which were attributed to an atomic layer CVD (ALCVD) mechanism modified by homogeneous reactions. The effect of the modified ALCVD was higher permeances than would be expected. P-type zeolite membranes were also made and found to have similar separation properties to the more heavily modified γ-alumina membranes.  相似文献   

18.
At a constant ionic strength corresponding to human urine (Ic =  0.300 mol · dm  3), the solubilities of xanthine were measured as a function of   lg{c (H + ) / co} (co =  1 mol · dm  3) at the temperatures T =  298.15 K and T =  310.15 K, respectively. Highly reproducible solubility and dissociation constants were obtained. Also, for the first time, the dissolution enthalpy of xanthine was determined calorimetrically. The values of this quantity obtained from both calorimetric determination and temperature dependence of solubility equilibrium constants are thermodynamically consistent.  相似文献   

19.
Mesoporous silicon membranes are functionalized with ammonium groups and evaluated as high efficient anion exchange membrane in a miniaturized alkaline glucose fuel cell setup. N-Trimethoxysilylpropyl-N,N,N-trimethylammonium chloride is grafted onto the pore walls of porous silicon resulting in the anionic conductivity enhancement. The functionalization process is followed by FTIR spectroscopy where the optimized parameter could be determined. The ionic conductivity is measured using impedance spectroscopy and gives 5.6 mS cm 1. These modified mesoporous silicon membranes are integrated in a specially designed miniature alkaline (pH 13) glucose/air fuel cell prototype using a conventional platinum-carbon anode and a cobalt phthalocyanine-carbon nanotube cathode. The enhanced anion conductivity of these membranes leads to peak power densities of 7 ± 0.12 mW cm 2 at “air breathing” conditions at room temperature.  相似文献   

20.
A perovskite-type oxide of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) with mixed electronic and oxygen ionic conductivity at high temperatures was used as an oxygen-permeable membrane. A tubular membrane of BSCFO made by extrusion method has been used in the membrane reactor to exclusively transport oxygen for the partial oxidation of ethane (POE) to syngas with catalyst of LiLaNiO/γ-Al2O3 at temperatures of 800–900 °C. After only 30 min POE reaction in the membrane reactor, the oxygen permeation flux reached at 8.2 ml cm−2 min−1. After that, the oxygen permeation flux increased slowly and it took 12 h to reach at 11.0 ml cm−2 min−1. SEM and EDS analysis showed that Sr and Ba segregations occurred on the used membrane surface exposed to air while Co slightly enriched on the membrane surface exposed to ethane. The oxygen permeation flux increased with increasing of concentration of C2H6, which was attributed to increasing of the driving force resulting from the more reducing conditions produced with an increase of concentration of C2H6 in the feed gas. The tubular membrane reactor was successfully operated for POE reaction at 875 °C for more than 100 h without failure, with ethane conversion of ∼100%, CO selectivity of >91% and oxygen permeation fluxes of 10–11 ml cm−2 min−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号