首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chaos synchronization and message transmission of a mutually coupled system consisting of two semiconductor lasers (SLs) and a partially transparent mirror (PTM) in between are investigated theoretically. Analytical results show that two types of chaos synchronization schemes, named as isochronal synchronization (IS) and leader/laggard synchronization (LLS), can be achieved by adjusting the reflectivity and position of PTM. By establishing SIMULINK model, numerical simulations illustrate that as the PTM is positioned at the center of two lasers, IS is available when the reflectivity of PTM is moderate. The LLS is achieved when the reflectivity of PTM equals to 0.5, which means feedback strength equals to coupling strength. Its lag time is just determined by the difference of feedback delay time. The investigations of mutual chaos pass filtering (MCPF) effects and the secure chaotic communication simulations indicate that IS allows real-time bidirectional message transmission on a public-channel, while LLS can achieve higher security chaotic communication by using its lag time as cryptography key. The demonstrated system can be used as a rudiment of array chaos communications system.  相似文献   

2.
《Physics letters. A》2014,378(30-31):2108-2112
Synchronization of two synaptically coupled neurons with memory and synaptic delay is studied using the Rulkov map, one of the simplest neuron models which displays specific features inherent to bursting dynamics. We demonstrate a transition from lag to anticipated synchronization as the relationship between the memory duration and the synaptic delay time changes. The neuron maps synchronize either with anticipation, if the memory is longer than the synaptic delay time, or with lag otherwise. The mean anticipation time is equal to the difference between the memory and synaptic delay independently of the coupling strength. Frequency entrainment and phase-locking phenomena as well as a transition from regular spikes to chaos are demonstrated with respect to the coupling strength.  相似文献   

3.
张丽  杨晓丽  孙中奎 《物理学报》2013,62(24):240502-240502
时滞和噪声在复杂网络中普遍存在,而含有耦合时滞和噪声摄动的耦合网络同步的研究工作却极其稀少. 本文针对噪声环境下具有不同节点动力学、不同拓扑结构及不同节点数目的耦合时滞网络,提出了两个网络之间的广义投影滞后同步. 首先,构建了更加贴近现实的驱动-响应网络同步的理论框架;其次,基于随机时滞微分方程LaSalle不变性原理,严格证明了在合理的控制器作用下,驱动网络和响应网络在几乎必然渐近稳定性意义下能够取得广义投影滞后同步;最后,借助于计算机仿真,通过具体的网络模型验证了理论推理的有效性. 数值模拟结果表明,驱动网络与响应网络不但能够达到广义投影滞后同步,而且同步效果不依赖于耦合时滞和比例因子的选取,同时也揭示了更新增益和耦合时滞对同步收敛速度的显著性影响. 关键词: 复杂网络 广义投影滞后同步 随机噪声 时滞  相似文献   

4.
刘莹莹  潘炜  江宁  项水英 《光子学报》2012,41(9):1023-1027
针对双延时和三延时互耦合半导体激光器系统,研究了互耦合延时和互耦合强度对实时混沌同步质量的影响,提出了双延时互耦合系统中可将其中一个互耦合延时看作反馈延时的思想,揭示了多延时互耦合半导体激光器系统实时混沌同步条件和规律.研究结果表明,多延时互耦合系统中,某两条双向链路的互耦合延时比值为2,是实现高品质实时混沌同步的基本条件;增大互耦合强度,可以改善实时混沌同步品质,且在较低的等效耦合强度条件下,双延时互耦合系统较三延时互耦合系统更易于实现良好的实时混沌同步.  相似文献   

5.
Existence of a new type of oscillating synchronization that oscillates between three different types of synchronizations (anticipatory, complete, and lag synchronizations) is identified in unidirectionally coupled nonlinear time-delay systems having two different time-delays, that is feedback delay with a periodic delay time modulation and a constant coupling delay. Intermittent anticipatory, intermittent lag, and complete synchronizations are shown to exist in the same system with identical delay time modulations in both the delays. The transition from anticipatory to complete synchronization and from complete to lag synchronization as a function of coupling delay with suitable stability condition is discussed. The intermittent anticipatory and lag synchronizations are characterized by the minimum of the similarity functions and the intermittent behavior is characterized by a universal asymptotic -32 power law distribution. It is also shown that the delay time carved out of the trajectories of the time-delay system with periodic delay time modulation cannot be estimated using conventional methods, thereby reducing the possibility of decoding the message by phase space reconstruction.  相似文献   

6.
Experimental observations of typical kinds of synchronization transitions are reported in unidirectionally coupled time-delay electronic circuits with a threshold nonlinearity and two time delays, namely feedback delay τ(1) and coupling delay τ(2). We have observed transitions from anticipatory to lag via complete synchronization and their inverse counterparts with excitatory and inhibitory couplings, respectively, as a function of the coupling delay τ(2). The anticipating and lag times depend on the difference between the feedback and the coupling delays. A single stability condition for all the different types of synchronization is found to be valid as the stability condition is independent of both the delays. Further, the existence of different kinds of synchronizations observed experimentally is corroborated by numerical simulations and from the changes in the Lyapunov exponents of the coupled time-delay systems.  相似文献   

7.
We report a design of delay coupling for lag synchronization in two unidirectionally coupled chaotic oscillators. A delay term is introduced in the definition of the coupling to target any desired lag between the driver and the response. The stability of the lag synchronization is ensured by using the Hurwitz matrix stability. We are able to scale up or down the size of a driver attractor at a response system in presence of a lag. This allows compensating the attenuation of the amplitude of a signal during transmission through a delay line. The delay coupling is illustrated with numerical examples of 3D systems, the Hindmarsh-Rose neuron model, the Ro?ssler system, a Sprott system, and a 4D system. We implemented the coupling in electronic circuit to realize any desired lag synchronization in chaotic oscillators and scaling of attractors.  相似文献   

8.
刘莹莹  潘炜  江宁  项水英 《光子学报》2014,(9):1023-1027
针对双延时和三延时互耦合半导体激光器系统,研究了互耦合延时和互耦合强度对实时混沌同步质量的影响,提出了双延时互耦合系统中可将其中一个互耦合延时看作反馈延时的思想,揭示了多延时互耦合半导体激光器系统实时混沌同步条件和规律.研究结果表明,多延时互耦合系统中,某两条双向链路的互耦合延时比值为2,是实现高品质实时混沌同步的基本条件;增大互耦合强度,可以改善实时混沌同步品质,且在较低的等效耦合强度条件下,双延时互耦合系统较三延时互耦合系统更易于实现良好的实时混沌同步.  相似文献   

9.
Lag synchronization is a recently discovered theoretical phenomenon where the dynamical variables of two coupled, nonidentical chaotic oscillators are synchronized with a time delay relative to each other. We investigate experimentally and numerically to what extent lag synchronization can be observed in physical systems where noise is inevitable. Our measurements and numerical computation suggest that lag synchronization is typically destroyed when the noise level is comparable to the amount of average system mismatch. At small noise levels, lag synchronization occurs in an intermittent fashion.  相似文献   

10.
We demonstrate the influence of vectorial coupling on the synchronization behavior of complex systems. We study two semiconductor lasers subject to delayed optical feedback which are unidirectionally coherently coupled via their optical fields. Our experimental and numerical results demonstrate a characteristic synchronization scenario in dependence on the relative feedback phase leading cyclically from chaos synchronization to almost uncorrelated states, and back to chaos synchronization. Finally, we reveal the influence of the feedback phase on the dynamics of the solitary delay system.  相似文献   

11.
We make first report on inverse chaos synchronization between bidirectionally non-linearly and linearly coupled variable multiple time delay laser systems governed by the Ikeda model. The results are of certain importance in secure chaos-based communication systems.  相似文献   

12.
In this paper, a bidirectional chaos secret communication system, based on mutually coupled semiconductor lasers (MCSLs) with asymmetrical bias currents, is proposed, and the synchronization characteristics and the communication performances of such a system are numerically investigated. The results show that the stable leader-laggard chaos synchronization can be achieved under relatively large asymmetrical bias current levels. Meantime, the influence of the intrinsic parameter variations of the laser on the synchronization quality is also considered, and the simulation reveals that this system still possesses good robustness to the parameter variations. Moreover, the influences of delay time and mutually coupling strength between the two lasers on chaos communication performance have also been discussed. Finally, unidirectional and bidirectional secret communication performances of such a system are examined under the chaos masking (CMS) encryption scheme, and the security of this system is also discussed.  相似文献   

13.
Chaos and chaos synchronization of the horizontal platform system are studied in this paper. Because of the non-linear terms of the systems, the systems exhibit both regular and chaotic motions. By applying various numerical results, such as phase portraits, Poincaré maps, time history and power spectrum analysis, the behaviors of the periodic and chaos synchronization are presented. The effects of the change of parameters in the system can be found in the bifurcation diagrams. Chaos synchronization of feedback methods in two coupled systems has been studied by Lyapunov exponent and coupling strength. Besides, phase effect of external excitations and the transient time in unidirectional synchronization also have been researched.  相似文献   

14.
We construct a new RC phase shift network based Chua's circuit, which exhibits a period-doubling bifurcation route to chaos. Using coupled versions of such a phase-shift network based Chua's oscillators, we describe a new method for achieving complete synchronization (CS), approximate lag synchronization (LS), and approximate anticipating synchronization (AS) without delay or parameter mismatch. Employing the Pecora and Carroll approach, chaos synchronization is achieved in coupled chaotic oscillators, where the drive system variables control the response system. As a result, AS or LS or CS is demonstrated without using a variable delay line both experimentally and numerically.  相似文献   

15.
We study chaos synchronization experimentally in a modulated globally coupled three-mode laser with different modal gains subjected to self-mixing Doppler-shifted feedback, which can apply the loss modulation to individual modes at Doppler-shift frequencies. Depending on the pump power, different forms of collective chaos synchronizations were found to appear when the laser was modulated at the highest relaxation oscillation frequency, reflecting the change in cross-saturation coefficient among modes. In the present experiment, each pair of modes exhibited phase, lag, or generalized synchronization collectively according to the inherent antiphase dynamics, where these types of synchronization have already been demonstrated in two coupled chaotic oscillators in different physical systems. Information flows among oscillating modes which are established in different forms of collective chaos synchronizations were characterized by information-circulation analysis of the experimental time series. (c) 2002 American Institute of Physics.  相似文献   

16.
A pair of coupled erbium doped fiber ring lasers is used to explore the dynamics of coupled spatiotemporal systems. The lasers are mutually coupled with a coupling delay less than the cavity round-trip time. We study synchronization between the two lasers in the experiment and in a delay differential equation model of the system. Because the lasers are internally perturbed by spontaneous emission, we include a noise source in the model to obtain stochastic realizations of the deterministic equations. Both amplitude synchronization and phase synchronization are considered. We use the Hilbert transform to define the phase variable and compute phase synchronization. We find that synchronization increases with coupling strength in the experiment and the model. When the time series from two lasers are time shifted in either direction by the delay time, approximately equal synchronization is frequently observed, so that a clear leader and follower cannot be identified. We define an algorithm to determine which laser leads the other when the synchronization is sufficiently different with one direction of time shift, and statistics of switches in leader and follower are studied. The frequency of switching between leader and follower increases with coupling strength, as might be expected since the lasers mutually influence each other more effectively with stronger coupling.  相似文献   

17.
刘莹莹  潘炜  江宁  项水英  林煜东 《物理学报》2013,62(2):24208-024208
通过在互耦合外腔半导体激光器之间增加中继激光器,建立了一种链式互耦合半导体激光器混沌同步系统模型.理论分析了系统的实时混沌同步条件,数值研究了注入电流、互耦合条件、反馈条件等对系统实时混沌同步品质的影响,揭示了同步质量在反馈强度和互耦合强度二维参数空间的分布规律.结果表明:注入电流较大时,满足互耦合强度和反馈强度相同,互耦合延时和反馈延时相等,系统中所有激光器之间可同时实现稳定高品质实时混沌同步;中心激光器和边激光器之间的稳定实时混沌同步分布在在互耦合强度和反馈强度较小的区域以及互耦合强度和反馈强度相近的区域;边激光器之间由于同时接收到中心激光器实施的相同注入,能够较容易的实现稳定高品质的实时混沌同步.该系统可进一步扩展成为实现远距离的双向实时混沌同步或阵列激光器系统的实时混沌同步.  相似文献   

18.
This paper examines the robustness of isochronous synchronization in simple arrays of bidirectionally coupled systems. First, the achronal synchronization of two mutually chaotic circuits, which are coupled with delay, is analyzed. Next, a third chaotic circuit acting as a relay between the previous two circuits is introduced. We observe that, despite the delay in the coupling path, the outer dynamical systems show isochronous synchronization of their outputs, i.e., display the same dynamics at exactly the same moment. Finally, we give here the first experimental evidence that the central relaying system is not required to be of the same kind of its outer counterparts.  相似文献   

19.
耦合混沌系统的相同步:从高维混沌到低维混沌   总被引:5,自引:0,他引:5       下载免费PDF全文
郑志刚  胡岗  周昌松  胡斑比 《物理学报》2000,49(12):2320-2327
混沌系统的相同步现象是近几年混沌同步研究的热点,它反映了混沌运动中的有序行为.用分岔树来研究耦合系统相同步的进程,并用Lyapunov指数谱来探讨系统动力学在相同步时从高维混沌向低维混沌过渡的进程.发现了从多个有理同步的时间交替到完全相同步的道路.还 发现了相同步中的混沌抑制及通过倍周期分岔向混沌同步的恢复.此外,研究表明,非对称 耦合可以大大加强耦合系统的相同步,这对实际应用有重要的意义. 关键词: 相同步 分岔树 李指数  相似文献   

20.
Quantum chaos is a subject whose major goal is to identify and to investigate different quantum signatures of classical chaos. Here we study entanglement production in coupled chaotic systems as a possible quantum indicator of classical chaos. We use coupled kicked tops as a model for our extensive numerical studies. We find that, in general, chaos in the system produces more entanglement. However, coupling strength between two subsystems is also a very important parameter for entanglement production. Here we show how chaos can lead to large entanglement which is universal and describable by random matrix theory (RMT). We also explain entanglement production in coupled strongly chaotic systems by deriving a formula based on RMT. This formula is valid for arbitrary coupling strengths, as well as for sufficiently long time. Here we investigate also the effect of chaos on the entanglement production for the mixed initial state. We find that many properties of the mixed-state entanglement production are qualitatively similar to the pure state entanglement production. We however still lack an analytical understanding of the mixed-state entanglement production in chaotic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号