首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Relative permeability relations: A key factor for a drying model   总被引:2,自引:0,他引:2  
In the modelling of heat, mass and momentum transfer phenomena which occur in a capillary porous medium during drying, the liquid and gas flows are usually described by the generalised Darcy laws. Nevertheless, the question of how to determine experimentally the relative permeability relations remains unanswered for most materials that consist of water and humid air, and as a result, arbitrary functions are used in the drying codes. In this paper, the emphasis is on deducing from both numerical and experimental studies a method for estimating pertinent relations for these key parameters. In the first part, the sensitivity of liquid velocity and, consequently, of drying kinetics in the variation of the relative permeabilities is investigated numerically by testing various forms. It is concluded that in order to predict a realistic liquid velocity behaviour, relative permeabilities can be linked to a measurable quantity: the capillary pressure. An estimation technique, based on simulations coupled with experimental measurements of capillary pressure, together with moisture content kinetics obtained for low or middle temperature convective drying, is deduced. In the second part, the proposed methodology is applied to pine wood. It is shown that the obtained relations provide closer representation of physical reality than those commonly used.  相似文献   

2.
This paper presents an analytical Buckley-Leverett-type solution for one-dimensibnal immiscible displacement of a Newtonian fluid by a non-Newtonian fluid in porous media. The non-Newtonian fluid viscosity is assumed to be a function of the flow potential gradient and the non-Newtonian phase saturation. To apply this method to field problems a practical procedure has been developed which is based on the analytical solution and is similar to the graphic technique of Welge. Our solution can be regarded as an extension of the Buckley-Leverett method to Non-Newtonian fluids. The analytical result reveals how the saturation profile and the displacement efficiency are controlled not only by the relative permeabilities, as in the Buckley-Leverett solution, but also by the inherent complexities of the non-Newtonian fluid. Two examples of the application of the solution are given. One application is the verification of a numerical model, which has been developed for simulation of flow of immiscible non-Newtonian and Newtonian fluids in porous media. Excellent agreement between the numerical and analytical results has been obtained using a power-law non-Newtonian fluid. Another application is to examine the effects of non-Newtonian behavior on immiscible displacement of a Newtonian fluid by a power-law non-Newtonian fluid.  相似文献   

3.
Pulsed field gradient nuclear magnetic resonance (PFG-NMR) is used to measure the molecular displacements for the flow of a fluid through a capillary tube and a packed bed made of monodisperse PMMA beads. The molecules average displacement is studied using both the formalism of propagators and the cumulant method. In the Poiseuille case, the dispersion coefficients determined by the cumulant method compare satisfactorily with the theoretical values obtained. The technique is then extended to study the flow through a porous medium. We thus analyze Newtonian (water) and non-Newtonian (Xanthan) flows and put a particular emphasis on comparing the dispersion mechanisms between Newtonian and non-Newtonian fluids.  相似文献   

4.
Flow of non-Newtonian fluids through porous media at high Reynolds numbers is often encountered in chemical, pharmaceutical and food, as well as petroleum and groundwater engineering, and in many other industrial applications. Under the majority of operating conditions typically explored, the dependence of pressure drops on flow rate is non-linear and the development of models capable of describing accurately this dependence, in conjunction with non-trivial rheological behaviors, is of paramount importance. In this work, pore-scale single-phase flow simulations conducted on synthetic two-dimensional porous media are performed via computational fluid dynamics for both Newtonian and non-Newtonian fluids and the results are used for the extension and validation of the Darcy?CForchheimer law, herein proposed for shear-thinning fluid models of Cross, Ellis and Carreau. The inertial parameter ?? is demonstrated to be independent of the viscous properties of the fluids. The results of flow simulations show the superposition of two contributions to pressure drops: one, strictly related to the non-Newtonian properties of the fluid, dominates at low Reynolds numbers, while a quadratic one, arising at higher Reynolds numbers, is dependent on the porous medium properties. The use of pore-scale flow simulations on limited portions of the porous medium is here proposed for the determination of the macroscale-averaged parameters (permeability K, inertial coefficient ?? and shift factor ??), which are required for the estimation of pressure drops via the extended Darcy?CForchheimer law. The method can be applied for those fluids which would lead to critical conditions (high pressures for low permeability media and/or high flow rates) in laboratory tests.  相似文献   

5.
6.
Nanoparticle(drug particle) dispersion is an important phenomenon during nanodrug delivery in the bloodstream by using multifunctional carrier particles. The aim of this study is to understand the dispersion of drug particle(nanoparticle) transport during steady blood flow through a microvessel. A two-phase fluid model is considered to define blood flow through a microvessel. Plug and intermediate regions are defined by a non-Newtonian Herschel-Bulkley fluid model where the plug region appears due to the aggregation of red blood cells at the axis in the vessel. The peripheral(porous in nature)region is defined by the Newtonian fluids. The wall of the microvessel is considered to be permeable and characterized by the Darcy model. Stress-jump and velocity slip conditions are incorporated respectively at the interface of the intermediate and peripheral regions and at the inner surface of the microvessel. The effects of the rheological parameter, the pressure constant, the particle volume fraction, the stress jump constant, the slip constant,and the yield stress on the dispersion are analyzed and discussed. It is observed that the non-dimensional pressure gradient and the yield stress enhance the dispersion rate of the nanoparticle, while the opposite trends are observed for the velocity slip constant, the nanoparticle volume fraction, the rheological parameter, and the stress-jump constant.  相似文献   

7.
8.
9.
An analytical model describing the development of the filtration instability of the displacement front of fluids with different viscosities in a porous medium with account for capillary forces is proposed. A set of laboratory experiments on viscous fluid displacement from a porous medium is carried out. To describe the observable flows the model deals with the characteristic profile of the mean water saturation along the flow rather than with the curves of relative phase permeabilities of the fluids. The analytical model developed well describes the results of the laboratory modeling and the data of an actual oil field operation.  相似文献   

10.
A theoretical model based on the force balance between pressure, viscous force, and inertia force is proposed to predict the flow resistance of Newtonian and power-law non-Newtonian fluids through porous packed beds. The present model takes inertia effect into consideration, and the flow regime can be extended from Darcy flow to non-Darcy flow. It is demonstrated that the present model can predict most available experimental data well. The present results are also compared to the Ergun equation and other drag correlations.  相似文献   

11.
While it is generally assumed that in the viscous flow regime, the two-phase flow relative permeabilities in fractured and porous media depend uniquely on the phase saturations, several studies have shown that for non-Darcian flows (i.e., where the inertial forces are not negligible compared with the viscous forces), the relative permeabilities not only depend on phase saturations but also on the flow regime. Experimental results on inertial single- and two-phase flows in two transparent replicas of real rough fractures are presented and modeled combining a generalization of the single-phase flow Darcy’s law with the apparent permeability concept. The experimental setup was designed to measure injected fluid flow rates, pressure drop within the fracture, and fluid saturation by image processing. For both fractures, single-phase flow experiments were modeled by means of the full cubic inertial law which allowed the determination of the intrinsic hydrodynamic parameters. Using these parameters, the apparent permeability of each fracture was calculated as a function of the Reynolds number, leading to an elegant means to compare the two fractures in terms of hydraulic behavior versus flow regime. Also, a method for determining the experimental transition flow rate between the weak inertia and the strong inertia flow regimes is proposed. Two-phase flow experiments consisted in measuring the pressure drop and the fluid saturation within the fractures, for various constant values of the liquid flow rate and for increasing values of the gas flow rate. Regardless of the explored flow regime, two-phase flow relative permeabilities were calculated as the ratio of the single phase flow pressure drop per unit length divided by the two-phase flow pressure drop per unit length, and were plotted versus the measured fluid saturation. Results confirm the dependence of the relative permeabilities on the flow regime. Also the proposed generalization of Darcy’s law shows that the relative permeabilities versus fluid saturation follow physical meaningful trends for different liquid and gas flow rates. The presented model fits correctly the liquid and gas experimental relative permeabilities as well as the fluid saturation.  相似文献   

12.
13.
We present an analytical formulation useful to interpret the key phenomena involved in non-Newtonian displacement in porous media and an analysis of the results obtained by considering the uncertainty associated with relevant problem parameters. To derive a benchmark solution, we consider the radial dynamics of a moving stable interface in a porous domain saturated by two fluids, displacing and displaced, both non-Newtonian of shear-thinning power-law behavior, assuming the pressure and velocity to be continuous at the interface, and constant initial pressure. The flow law for both fluids is a modified Darcy’s law. Coupling the nonlinear flow law with the continuity equation, and taking into account compressibility effects, yields a set of nonlinear second-order partial differential equations. Considering two fluids with the same flow behavior index n allows transformation of the latter equations via a self-similar variable; further transformation of the equations incorporating the conditions at the interface shows for n<1 the existence of a compression front ahead of the moving interface. Solving the resulting set of nonlinear equations yields the positions of the moving interface and compression front, and the pressure distributions; the latter are derived in closed form for any value of n. A sensitivity analysis of the model responses is conducted both in a deterministic and a stochastic framework. In the latter case, Global Sensitivity Analysis (GSA) of the benchmark analytical model is adopted to study how the effects of uncertainty affecting selected parameters: (a) the fluids flow behavior index, (b) the relative total compressibility and mobility in the displaced and displacing fluid domains, and (c) the domain permeability and porosity, propagate to state variables. The relative influence of input parameters on model outputs is evaluated by means of associated Sobol indices, calculated via the Polynomial Chaos Expansion (PCE) technique. The goodness of the results obtained by the PCE is assessed by comparison against a traditional Monte Carlo (MC) approach.  相似文献   

14.
Conductive and convective transport are related in two phase porous media, provided capillary effects are negligible. This paper shows that the role of conduction will be unimportant, relative to convective effects, for sufficiently high temperatures and sufficiently high permeabilities. An approximately linear relationship holds between temperature and the logarithm of permeability, above which conduction is unimportant relative to convection.  相似文献   

15.
This work studies the flow characteristics of power-law fluids in the fractal-like tree network. A fractal model is developed for the permeability of power-law fluid flow in fractal-like tree network based on straight capillary model, generalized Darcy’s law and constitutive equation for power-law fluids. Analytical expression for permeability of power-law fluids in the network is presented and found to be a function of network microstructural parameters such as the branching diameter ratio, the branching length ratio, the total number of branching levels, the bifurcation angle, the branching number, the diameter of the zeroth branching level and the power exponent of power-law fluids. Both the phase permeabilities and the relative permeabilities are also derived and found to be a function of power exponent for the wetting phase and non-wetting phase, the saturation and other microstructural parameters and independent of the bifurcation angle.  相似文献   

16.
In this paper, the analytical expressions for permeability of (both saturated and unsaturated) porous media embedded with a fractal-like tree network are presented based on fractal theory and technique when the capillary pressure is taken into account. Both the dimensionless effective permeability and the relative permeability of the composites, which are defined as porous media embedded with a fractal-like tree network in this work, are derived and found to be a function of saturation, the capillary pressure and microstructural parameters of the networks. The relative permeabilities predicted by the present fractal model are compared with the available experimental data and a fair agreement between them is found.  相似文献   

17.
The percolation theory approach to static and dynamic properties of the single- and two-phase fluid flow in porous media is described. Using percolation cluster scaling laws, one can obtain functional relations between the saturation fraction of a given phase and the capillary pressure, the relative permeability, and the dispersion coefficient, in drainage and imbibition processes. In addition, the scale dependency of the transport coefficient is shown to be an outcome of the fractal nature of pore space and of the random flow pattern of the fluids or contaminant.  相似文献   

18.
Many resistivity data from laboratory measurements and well logging are available. Papers on the relationship between resistivity and relative permeability have been few. To this end, a new method was developed to infer two-phase relative permeability from the resistivity data in a consolidated porous medium. It was found that the wetting phase relative permeability is inversely proportional to the resistivity index of a porous medium. The proposed model was verified using the experimental data in different rocks (Berea, Boise sandstone, and limestone) at different temperatures up to 300°F. The results demonstrated that the oil and water relative permeabilities calculated from the experimental resistivity data by using the model proposed in this article were close to those calculated from the capillary pressure data in the rock samples with different porosities and permeabilities. The results demonstrated that the proposed approach to calculating two-phase relative permeability from resistivity data works satisfactorily in the cases studied.  相似文献   

19.
When regions of three-phase flow arise in an oil reservoir, each of the flow parameters, i.e. capillary pressures and relative permeabilities, are generally functions of two phase saturations and depend on the wettability state. The idea of this work is to generate consistent pore-scale based three-phase capillary pressures and relative permeabilities. These are then used as input to a 1-D continuum core- or reservoir-scale simulator. The pore-scale model comprises a bundle of cylindrical capillary tubes, which has a distribution of radii and a prescribed wettability state. Contrary to a full pore-network model, the bundle model allows us to obtain the flow functions for the saturations produced at the continuum-scale iteratively. Hence, the complex dependencies of relative permeability and capillary pressure on saturation are directly taken care of. Simulations of gas injection are performed for different initial water and oil saturations, with and without capillary pressures, to demonstrate how the wettability state, incorporated in the pore-scale based flow functions, affects the continuum-scale displacement patterns and saturation profiles. In general, wettability has a major impact on the displacements, even when capillary pressure is suppressed. Moreover, displacement paths produced at the pore-scale and at the continuum-scale models are similar, but they never completely coincide.  相似文献   

20.
Relative Permeability Analysis of Tube Bundle Models   总被引:1,自引:1,他引:0  
The analytical solution for calculating two-phase immiscible flow through a bundle of parallel capillary tubes of uniform diametral probability distribution is developed and employed to calculate the relative permeabilities of both phases. Also, expressions for calculating two-phase flow through bundles of serial tubes (tubes in which the diameter varies along the direction of flow) are obtained and utilized to study relative permeability characteristics using a lognormal tube diameter distribution. The effect of viscosity ratio on conventional relative permeability was investigated and it was found to have a significant effect for both the parallel and serial tube models. General agreement was observed between trends of relative permeability ratios found in this work and those from experimental results of Singhal et al. (1976) using porous media consisting of mixtures of Teflon powder and glass beads. It was concluded that neglecting the difference between the average pressure of the non-wetting phase and the average pressure of the wetting phase (the macro-scale capillary pressure) – a necessary assumption underlying the popular analysis methods of Johnson et al. (1959) and Jones and Roszelle (1978) – was responsible for the disparity in the relative permeability curves for various viscosity ratios. The methods therefore do not account for non-local viscous effects when applied to tube bundle models. It was contended that average pressure differences between two immiscible phases can arise from either capillary interfaces (micro-scale capillary pressures) or due to disparate pressure gradients that are maintained for a flow of two fluids of viscosity ratio that is different from unity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号