首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
含芳胺和1,3,4-噁二唑的星型有机分子合成及光电性质   总被引:2,自引:0,他引:2  
通过分子设计, 采用多步反应合成了2种新型的具有“双极”(Bipolar)性质和发光性能的以N原子为中心的星型有机分子. 用1H NMR, MS和元素分析进行了表征, 研究了化合物的热稳定性和固体粉末的光致发光性质, 并用循环伏安法测定了其电化学性能. 结果表明, 这种同时具备空穴传导和电子输入双重功能基团的星型有机小分子的光致发光性能优良(量子效率达到82%—95%), 热稳定性好, 可以作为有机电致发光器件材料.  相似文献   

2.
采用分子设计的思想,通过多步反应合成了一种新型的以N原子为中心的蓝光发射星型有机小分子。用1H NMR,MS和元素分析进行了表征,研究了化合物的热稳定性和真空镀膜膜层的光致发光性质,用循环伏安法测定了其电化学性能。结果表明,这种合成的有机化合物光致发光性能优良(量子效率达到87%),热稳定性好,可作为制作有机电致发光器件的候选材料。  相似文献   

3.
《Chemical physics letters》2001,331(3-4):206-210
A bilayer organic light-emitting diode using a blue-fluorescent yttrium complex, tris(1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone)-(2,2-dipyridyl) yttrium [Y(PMIP)3(Bipy)] (YPB) as an emitting material and poly(N-vinylcarbazole) (PVK) as a hole-transporting material emitted bright green light instead of blue light. It was attributed to the exciplex formation at the solid interface between the PVK and YPB layers, which was demonstrated by the measurement of the absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra of the mixture of PVK and YPB (molar ratio 1:1). The device exhibited a maximum luminance of 177 cd/m2 and a peak power efficiency of 0.02 lm/W.  相似文献   

4.
The synthesis of new difunctional (i.e., light-emitting and hole-transporting) fluorophore molecules, 2,2′-difuryl-4,4′-(N,N,N′,N′-tetraphenyl)diaminobiphenyl and 5,5′-bis(4-N,N′-diphenylaminophenyl)-2,2′-bifuryl, which contain hole-transporting triphenylamino units, are reported. These difunctional molecules emit intense blue photoluminescence and further reveal high HOMO energy values as well as high glass transition temperatures.  相似文献   

5.
Efficient white light emitting polymers were synthesized based on poly(9,9-dioctylfluorene-co-dibenzothiophene-S,S-dioxide) as blue emitter and a bisphenylamine functionalized 2,1,3-benzothiadiazole (DPABT) as red emitter. It was found that the incorporation of hole-transporting carbazole moiety into polymer main chain could effectively reduce the hole injection barriers, which can lead to distinctly improved charge balance in the emissive layer. Additionally, the hole-transporting carbazole units may form efficient bipolar host with electron-transporting dibenzothiophene-S,S-dioxide units. The white light emitting diodes based on single polymer PFSOCzDPABT showed the maximum luminous efficiency of 3.3 cd/A with the maximum luminance of 10282 cd/m2 , and the luminous efficiency showed only 24% roll off at current density of 400 mA/cm2 . These Commission Internationale d’Enclairage (CIE) coordinates of the devices changed slightly with the driving voltages increasing from 8 V to 12 V, and were very close to National Television System Committee (NTSC) standard white light emission of (0.33, 0.33). The results indicated that the incorporating bipolar host and low band gap DPABT unit was a promising way to achieve efficient single white light emitting copolymers.  相似文献   

6.
Three polyfluorene derivatives which have oxetane‐containing phenyl group at C‐9 position were synthesized via the palladium‐catalyzed Suzuki‐coupling reaction. The synthesized polymers PFB, PFG, and PFR emit blue, green, and red light, respectively. A double‐layer device with the configuration of ITO/PEDOT/polymer/Ca/Al using PFB as the active layer showed a threshold voltage of 5 V, a maximum brightness of 2030 cd/m2, and a maximum current efficiency of 0.35 cd/A. Using PFG as the active layer, the device exhibited a threshold voltage of 6 V, a maximum brightness of 6447 cd/m2, and a maximum current efficiency of 1.27 cd/A. Using PFR as the active layer, the device showed a threshold voltage of 4 V, a maximum brightness of 2135 cd/m2, and a maximum current efficiency of 0.16 cd/A. Better electroluminescent performance was also found based on different design of device structures. Due to photo‐crosslinking property of oxetane groups, the UV‐exposed thin films are insoluble in common organic solvents. A device comprised of blue, green, and red‐emissive pixels was successfully fabricated by spin‐coating and photo‐lithographic processes. In addition, a white light‐emitting device with CIE coordinate of (0.34, 0.33) was achieved by blending PFR into a host material PFB as the active layer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 516–524, 2010  相似文献   

7.
Blue light‐emitting materials are receiving considerable academic and industrial interest due to their potential applications in optoelectronic devices. In this study, blue light‐emitting copolymers based on 9,9′ ‐ dioctylfluorene and 2,2′‐(1,4‐phenylene)‐bis(benzimidazole) moieties were synthesized through palladium‐catalyzed Suzuki coupling reaction. While the copolymer consisting of unsubstituted benzimidazoles (PFBI0) is insoluble in common organic solvents, its counterpart with N‐octyl substituted benzimidazoles (PFBI8) enjoys good solubility in toluene, tetrahydrofuran, dichloromethane (DCM), and chloroform. The PFBI8 copolymer shows good thermal stability, whose glass transition temperature and onset decomposition temperature are 103 and 428 °C, respectively. Its solutions emit blue light efficiently, with the quantum yield up to 99% in chloroform. The electroluminescence (EL) device of PFBI8 with the configuration of indium‐tin oxide/poly(ethylenedioxythiophene):poly(styrene sulfonic acid)/PFBI8/1,3,5‐tris(1‐phenyl‐1H‐benzimidazole‐2‐yl)benzene/LiF/Al emits blue light with the maximum at 448 nm. Such unoptimized polymer light‐emitting diode (PLED) exhibits a maximum luminance of 1534 cd/m2 with the current efficiency and power efficiency of 0.67 cd/A and 0.20 lm/W, respectively. The efficient blue emission and good EL performance make PFBI8 promising for optoelectronic applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
We have synthesized a novel carrier‐transporting copolymer and a nonconjugated light‐emitting polymer. The carrier‐transporting copolymer has a triphenylamine moiety as a hole‐transporting unit and a triazine moiety as an electron‐transporting unit, both of which are located in the polymer side chain. The nonconjugated light‐emitting polymer has a perylene moiety, which acts as an emitting unit in the polymer side chain. These polymers are very soluble in most organic solvents, such as monochlorobenzene, tetrahydrofuran, chloroform, and benzene. A single‐layered electroluminescent device consisting of ITO/copolymer and emitting‐material 4‐(dicyanomethylene)‐2‐methyl‐6‐(4‐dimethylaminostyryl)‐4H‐pyran (DCM) or light‐emitting polymer)/Al mixtures exhibits maximum external quantum efficiency when the concentration of the emitting material is 30 wt %. The device emits red or blue light according to the emitting material. When CsF is used as the electron‐injecting material, the drive voltage decreases drastically to 7 V, and the highest quantum efficiency is 0.5%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2733–2743, 2003  相似文献   

9.
In this paper, we describe a bipolar molecular design for small molecule solution‐processed organic light emitting diodes (OLEDs). Combining the rigidity of the conjugated emissive cores and the flexibility of the peripheral alkyl‐linked carbazole groups, two series of highly efficient bipolar RGB (red, green, blue) emitters have been synthesized and characterized. The emissive cores are composed of electron‐withdrawing groups; the carbazole groups endow the materials electron‐donating units. Such bipolar structures are advantageous for the carrier injection and balance. Four peripheral carbazole groups are introduced in T‐series materials (TCDqC, TCSoC, TCBzC, TCNzC), and another four in O‐series materials (OCDqC, OCSoC, OCBzC, OCNzC). With the single‐layer device configuration of ITO/PEDOT:PSS/emitting layer/CsF/Al, two green devices exhibited excellent performance with a maximum luminescence efficiency of over 6.4 cd A?1, and a high maximum luminance of more than 6700 cd m?2. In addition, compared with the T‐series, the luminescence efficiency of blue and red devices based on O‐series materials increased from 1.6 to 2.8 cd A?1 and 0.2 to 1.3 cd A?1, respectively. To our knowledge, the performance of the blue device based on OCSoC is among the best of the blue small‐molecule solution‐processed single‐layer devices reported so far.  相似文献   

10.
A novel blue‐light emitting terphenyl‐bridged ladder polysiloxane ( TBLP) was prepared by the condensation of a tetrasilanol monomer via a ladder supramolecular structure. TBLPs emit narrow blue light (420 nm) with high quantum yields (0.96) in diluted solution and shows no evident fluorophore aggregation in the solid state, indicating that the terphenyls are well isolated due to confinement of the ladder‐rungs. In addition, it has excellent emission stability at high temperature based on TGA, DSC and annealing experiments. Overall, TBLPs can be considered as a potential material for fabricating stable and high‐efficiency blue‐light emitting optoelectronic devices.

  相似文献   


11.
Direct anodic oxidation of 1,2-methylenedioxybenzene (MDOB) and 1,2-ethylenedioxybenzene (EDOB), analogues of 3,4-alkylenedioxythiophene and 3,4-alkylenedioxypyrrole, led to the formation of polyacetylene derivatives, poly(1,2-methylenedioxybenzene) (PMDOB) and poly(1,2-ethylenedioxybenzene) (PEDOB), on a platinum sheet in pure boron trifluoride diethyl etherate (BFEE). IR, 1H NMR, 13C NMR and quantum chemistry calculations confirmed that the polymerization occurred at C(4) and C(5) position on the benzene ring of the monomer, making the main backbone of PMDOB and PEDOB similar to polyacetylene. Both dedoped PMDOB and PEDOB in DMSO solution showed good fluorescence properties with quantum yields of 0.13 and 0.27, emitting blue and green light under excitation of 365 nm, respectively. PMDOB showed electrochromic properties from grass green (doped) to light nacarat (dedoped). PEDOB changed it from bottle green (doped) to nacarat (dedoped). Doped PMDOB and PEDOB own electrical conductivities of 0.1 S cm−1 and 0.17 S cm−1, respectively.  相似文献   

12.
Four new iridium(III) complexes 1-4, with 1,3,4-oxadiazole derivative as cyclometalated ligand for the first time, have been synthesized and structurally characterized by NMR, EA, MS and X-ray diffraction analysis (except 1). The stronger ligand field strength of the dithiolate ancillary ligands results in higher oxidation potentials and lower HOMO energy levels of complexes than acetylacetone. The absorption spectra of these complexes display low-energy metal-to-ligand charge transfer transition ranging from 350 to 500 nm. Complexes with dithiolate ancillary ligand emit at maximum wavelengths of ca. 500 nm, blue shifting 17 and 11 nm with respect to their counterpart with acetylacetone ligand. The electrophosphorescent devices with 2-4 as phosphorescent dopant in emitting layer have been fabricated. All devices have a low turn-on voltage in the range of 4.5 and 4.9 V. A high-efficiency green emission with maximum luminous efficiency of 5.28 cd/A at current density of 1.37 mA/cm2 and a maximum brightness of 2592 cd/m2 at 15.2 V has been achieved in device using 2 as emitter.  相似文献   

13.
Novel hole-transporting materials based on carbazole dendrimers, namely G1CBC and G2CBC were synthesized and characterized. They are thermally stable with high glass transition temperatures (Tg) up to 245 °C and exhibit chemically-stable redox processes. Double-layer green OLEDs using these materials as the hole-transporting layer (HTL) with the device configuration of ITO/HTL/Alq3/LiF:Al emit brightly (λem 522-534 nm) from the Alq3 layer with a maximum luminance and low turn-on voltage of 15,890 cd/m2 and 3.0 V, respectively. Their ability as HTLs in terms of device performance is comparable to the common hole-transporter N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1-biphenyl)-4,4-diamine (NPB), however their thermal properties were far greater than both NPB and N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)benzidine (TPD).  相似文献   

14.
A series of random copolymers POC10{Poly(2,5‐bis[(5‐decyloxy‐phenyl)‐1,3,4‐oxadiazole]styrene)}‐co‐Poly(N‐vinylcarbazole) (PVK) with different nvk content were synthesized through common radical polymerization and were incorporated into light emitting diodes as emitting layers. The structures and properties of the copolymers were characterized and evaluated by GPC, TGA, DSC, UV, PL, CV, and EL analyses. All the polymers enjoy high thermal stability. Cyclic voltammetry revealed that, with the incorporation of N‐vinylcarbazole to the copolymer, these copolymers had high‐lying HOMO energy values, which facilitated hole injection. PL peaks in the film show blue‐shift compared with those in solutions and fluorescent quantum efficiency decreased with the nvk content increasing, which supported the efficient energy transfer from nvk units to the oxadiazole units. Single‐layer LEDs with the configuration of ITO/PEDOT/PC10‐nvk/Mg:Ag/Ag were fabricated, which emit a blue light around 440 and 490 nm with a maximum brightness of 675.3 cd/m2 and luminous efficiency of 0.108 cd/A. Moreover, we fabricated electrophosphorescent device from bipolar transport copolymer PC10‐nvk4 as host material and an orange‐light‐emitting iridium phosphor IrMDPP as guest. The maximum luminous efficiency of 0.548 cd/A was obtained. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5452–5460, 2008  相似文献   

15.
In this paper, the electroluminescent properties of a new partially‐conjugated hyperbranched poly (p‐phenylene vinylene) (HPPV) were studied. The single layer light‐emitting device with HPPV as the emitting layer emits blue‐green light at 496 nm, with a luminance of 160 cd/m2 at 9 V, a turn‐on voltage of 4.3 V and an electroluminescent efficiency of 0.028 cd/A. By doping an electron‐transport material [2‐(4‐biphenylyl)‐5‐phenyl‐1,3,4‐oxadiazole, PBD] into the emitting layer and inserting a thin layer of tris(8‐hydroxy‐quinoline)aluminum (Alq3) as electron transporting/hole blocking layer for the devices, the electroluminescent efficiency of 1.42 cd/A and luminance of 1700 cd/m2 were achieved. The results demonstrate that the devices with the hyperbranched polymers as emitting material can achieve high efficiency through optimization of device structures. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Stable carbazole derivatives that contain peripheral diarylamines at the 3- and 6-positions and an ethyl or aryl substituent at the 9-position of the carbazole moiety have been synthesized via palladium-catalyzed C-N bond formation. These new carbazole compounds (carbs) are amorphous with high glass transition temperatures (T(g), 120-194 degrees C) and high thermal decomposition temperatures (T(d) > 450 degrees C). The compounds are weakly to moderately luminescent in nature. The emission wavelength ranges from green to blue and is dependent on the substituent at the peripheral nitrogen atoms. Two types of light-emitting diodes were constructed from carb: (I) ITO/carb/TPBI/Mg:Ag and (II) ITO/carb/Alq(3)/Mg:Ag, where TPBI and Alq(3) are 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene and tris(8-hydroxyquinoline) aluminum, respectively. In type I devices, the carb functions as the hole-transporting as well as emitting material. In type II devices, either carb, or Alq(3) is the light-emitting material. Several green light-emitting devices exhibit exceptional maximum brightness, and the physical performance appears to be better than those of typical green light-emitting devices of the structure ITO/diamine/Alq(3)/Mg:Ag. The relation between the LUMO of the carb and the performance of the light-emitting diode is discussed.  相似文献   

17.
In this work, a new type of miniaturized fibre-coupled solid-state light source is demonstrated as an excitation source for fluorescence detection in capillary electrophoresis. It is based on a parabolically shaped micro-light emitting diode (μ-LED) array with a custom band-pass optical interference filter (IF) deposited at the back of the LED substrate. The GaN μ-LED array consisted of 270 individual μ-LED elements with a peak emission at 470 nm, each about 14 μm in diameter and operated as a single unit. Light was extracted through the transparent substrate material, and coupled to an optical fibre (OF, 400 μm in diameter, numerical aperture NA = 0.37), to form an integrated μ-LED-IF-OF light source component. This packaged μ-LED-IF-OF light source emitted approximately 225 μW of optical power at a bias current of 20 mA. The bandpass IF filter was designed to reduce undesirable LED light emissions in the wavelength range above 490 nm. Devices with and without IF were compared in terms of the optical power output, spectral characteristics as well as LOD values. While the IF consisted of only 7.5 pairs (15 layers) of SiO2/HfO2 layers, it resulted in an improvement of the baseline noise as well as the detection limit measured using fluorescein as test analyte, both by approximately one order of magnitude, with a LOD of 1 × 10−8 mol L−1 obtained under optimised conditions. The μ-LED-IF-OF light source was then demonstrated for use in capillary electrophoresis with fluorimetric detection. The limits of detection obtained by this device were compared to those obtained with a commercial fibre coupled LED device.  相似文献   

18.
A novel multifunctional 1,6-bis(2-hydroxyphenyl)pyridine boron bis(4-n-butyl-phenyl)phenyleneamine compound in which the hole-transporting (HT), electron-transporting (ET), and emitting (EM) components are integrated into a single molecule was synthesized and used as an emitting material to fabricate an efficient single-layer electroluminescent device.  相似文献   

19.
We reported a new way to synthesize single‐chain white light‐emitting polyfluorene (WPF) with an increased molecular weight using azide‐alkyne click reaction. Four basic polymers with specific end‐capping, which exhibited high‐glass transition temperatures (Tg > 100 °C) and excellent thermal stability, were used as foundations of the WPF's synthesis; a blue‐light polymer (PFB2) end‐capped with azide groups can easily react with acetylene end‐capped polymers (PFB1, PFG1, and PFR1, which are emitting blue‐, green‐ and red‐light, respectively) to form triazole‐ring linkages in polar solvents such as N,N‐dimethylforamide/toluene co‐solvent at moderate temperature of 100 °C, even without metal‐catalyst. Several WPFs that consist of these four basic polymers in certain ratios were derived, and the polymer light‐emitting diode device based on the high‐molecular weight WPF was achieved and demonstrated a maximum brightness of 7551 cd/m2 (at 12.5 V) and a maximum yield of 5.5 cd/A with Commission Internationale de l'Eclairage coordinates of (0.30, 0.33) using fine‐tuned WPF5 as emitting material. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Triple-layer-type organic electroluminescent devices were fabricated using charge-transporting poly(N-vinylcarbazole) (PVK) as a hole-transporting emitter layer. Electron-transporting layers consisting of a triazole derivative (TAZ) and an aluminum complex (Alq) layer were used to maximize the carrier recombination efficiency. The EL device with a structure of glass substrate/indium-tinoxide/PVK/TAZ/AIq/Mg:Ag showed bright blue emission from the PVK layer with a luminance of over 700 cd/m2. The emission color was tuned to a desirable color in the visible region through doping the PVK layer with fluorescent dyes. Bright white emission, in particular, was obtained for the first time at a high luminance level of over 3000 cd/m2 by using three kinds of fluorescent dyes each emitting red, green or blue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号