首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1,3-Bis(α-picolyloxy)-p-tert-butylcalix[4]crown-5 in the cone conformation (2), 1,8-diiodoperfluorooctane or 1,6-diiodoperfluorohexane, and potassium iodide ternary mixtures undergo in solution self-sorting and afford crystalline “supramolecular salts”. These hybrid materials consist of supercation [K+ ? 2] and superanion [I–(CF2) n –I…I…I–(CF2) n –I…I…] (n = 6,8) components. In the supercations the potassium ion is embedded in the ionophoric pocket created by the heteroatoms present at the lower rim. In the superanions the iodide ions form infinite fluorous polyanionic chains as a result of a self-assembly process which relies on halogen bonding. Both cation encapsulation and anion-perfluorocarbon halogen bonding were detected in solution by 1H and 19F NMR, and in the gas phase by ESI MS.  相似文献   

2.
Debaprasad Mandal 《Tetrahedron》2010,66(5):1070-1077
Perfluoromethyldecalin solutions of the fluorous alkyl halides Rf8(CH2)mX (m=2, 3; X=Cl, I) are inert toward aqueous NaCl, KI, KCN, and NaOAc. However, substitution occurs at 100 °C in the presence of 10 mol % of the fluorous ammonium salts (Rf8(CH2)2)(Rf8(CH2)5)3N+ I (1) or (Rf8(CH2)3)4N+ Br (2) (10 mol %), which are fully or partially soluble in perfluoromethyldecalin under these conditions. Stoichiometric reactions of (a) 1 and Rf8(CH2)3Br, and (b) 2 and Rf8(CH2)2I are conducted in perfluoromethyldecalin at 100 °C, and yield the same Rf8(CH2)mI/Rf8(CH2)mBr equilibrium ratio (60-65:40-35). This shows that ionic displacements can take place in extremely nonpolar fluorous phases, and suggests a classical phase transfer mechanism for the catalyzed reactions. Interestingly, the non-fluorous ammonium salt mixture CH3(CH3(CH2)m)3N+ Cl (3, Aliquat® 336; m=2:1 7/9) also catalyzes halide substitutions, but under triphasic conditions with 3 suspended between the lower fluorous and upper aqueous layers. NMR experiments establish very low solubilities in both phases, suggesting interfacial catalysis.  相似文献   

3.
Carbohydrate glycosyl acceptor and donor moieties were synthesized efficiently by using the fluorous tag method. The p-alkoxyphenyl-type heavy fluorous tag was stable under all the reaction conditions used in the preparation of the various carbohydrate units. Each synthetic intermediate carrying the fluorous tag could be obtained in a simple straightforward manner by partition between fluorous and organic solvents.  相似文献   

4.
2,2,2-Trifluoroethanol, 1,1,1,3,3,3-hexafluoro-2-propanol, and nonafluoro-tert-butyl alcohol were used as precursors for the preparation of the appropriate bis(polyfluoroalkoxymethyl)carbinols [(RFHOCH2)2CHOH, 1a-c, RFH = (a) CF3CH2, (b) (CF3)2CH, and (c) (CF3)3C] and the corresponding mesylates [(RFHOCH2)2CHOSO2CH3, 2a-c]. This novel design paradigm is introduced to eliminate the persistence and bioaccumulation problems of fluorous chemistry, which are associated with the use of longer linear perfluoroalkyl groups (e.g. Rfn ≥ n-C8F17, n-C7F15). Secondary mesylates 2a,b and the primary tosylate [(CF3)3COCH2CH2OTs, 2d] displayed acceptable reactivity towards azide and imidazole nucleophiles to allow the syntheses of novel fluorous azides, which on hydrogenolysis with H2/Pd-C offered fluorous amines [(RFHOCH2)2CHNH2, 8a,b], and 1-(polyfluoroalkyl)imidazoles (5a,b,d), respectively, while 2c showed no reactivity due to steric hindrance. The reaction of 8a,b with formaline, glyoxal and hydrochloric acid gave symmetrical 1,3-dialkylated imidazolium chlorides (9a,b), while 5a,b,d were effectively alkylated using n-C8F17(CH2)3I, methyl iodide, 2-bromoethanol, and 2d to yield the corresponding 1,3-dialkylimidazolium iodides, bromides, and tosylates (7aa-ec). Some physical properties of new compounds including mp, bp and solubility patterns were also analyzed; and the fluorophilicity values of 1a-c, and 2a-c were experimentally determined by GC and/or 19F NMR spectroscopy.  相似文献   

5.
6.
Catalytic Friedel-Crafts acylation of benzene and unactivated benzenes, such as chlorobenzene and fluorobenzene, was successfully accomplished using rare earth(III) perfluorooctane sulfonates (RE(OPf)3), RE = Sc, Y, La ∼ Lu) and perfluorooctanesulfonic acid (PfOH) as catalysts in fluorous solvents. Solutions of Yb(OPf)3 and PfOH in perfluorodecalin (C10F18, cis and trans-mixture) are the most suitable catalytic system, with catalyst loading as low as 0.4%mol leading to clean, high-yielding benzoylation of a variety of unactivated benzenes. By simple separation of the fluorous phase containing only catalyst, acylation can be repeated several times.  相似文献   

7.
TeX4 (X = Cl, Br) react in HCl/HBr with [Ph(CH3)2Te]X (X = Cl, Br) to give [PhTe(CH3)2]2[TeCl6] (1) and [PhTe(CH3)2]2[TeBr6] (2). The reaction of PhTeX3 (X = Cl, Br, I) in cooled methanol with [(Ph)3Te]X (X = Cl, Br, I) leads to [Ph3Te][PhTeCl4] (3), [Ph3Te][PhTeBr4] (4) and [Ph3Te][PhTeI4] (5). In the lattices of the telluronium tellurolate salts 1 and 2, octahedral TeCl6 and TeBr6 dianions are linked by telluronium cations through Te?Cl and Te?Br secondary bonds, attaining bidimensional (1) and three-dimensional (2) assemblies. The complexes 3, 4 and 5 show two kinds of Te?halogen secondary interactions: the anion-anion interactions, which form centrosymmetric dimers, and two identical sets of three telluronium-tellurolate interactions, which accomplish the centrosymmetric fundamental moiety of the supramolecular arrays of the three compounds, with the tellurium atoms attaining distorted octahedral geometries. Also phenyl C-H?halogen secondary interactions are structure forming forces in the crystalline structures of compounds 3, 4 and 5.  相似文献   

8.
Bis(p-substituted benzoylmethyl)tellurium dibromides, (p-YC6H4COCH2)2TeBr2, (Y=H (1a), Me (1b), MeO (1c)) can be prepared either by direct insertion of elemental Te across CRf-Br bonds (where CRf refers to α-carbon of a functionalized organic moiety) or by the oxidative addition of bromine to (p-YC6H4COCH2)2Te (Y=H (2a), Me (2b), MeO (2c)). Bis(p-substituted benzoylmethyl)tellurium dichlorides, (p-YC6H4COCH2)2TeCl2 (Y=H (3a), Me (3b), MeO (3c)), are prepared by the reaction of the bis(p-substituted benzoylmethyl)tellurides 2a-c with SO2Cl2, whereas the corresponding diiodides (p-YC6H4COCH2)2TeI2 (Y=H (4a), Me (4b), MeO (4c)) can be obtained by the metathetical reaction of 1a-c with KI, or alternatively, by the oxidative addition of iodine to 2a-c. The reaction of 2a-c with allyl bromide affords the diorganotellurium dibromides 1a-c, rather than the expected triorganotelluronium bromides. Compounds 1-4 were characterized by elemental analyses, IR spectroscopy, 1H, 13C and 125Te NMR spectroscopy (solution and solid-state) and in case of 1c also by X-ray crystallography. (p-MeOC6H4COCH2)2TeBr2 (1c) provides, a rare example, among organotellurium compounds, of a supramolecular architecture, where C-H-O hydrogen bonds appear to be the non-covalent intermolecular associative force that dominates the crystal packing.  相似文献   

9.
The fluorocarbon soluble, binuclear ruthenium(I) complexes [Ru(μ-O2CMe)(CO)2LF]2, where LF is the perfluoroalkyl substituted tertiary phosphine, P(C6H4-4-CH2CH2(CF2)7CF3)3, or P(CH2CH2(CF2)5CF3)3, were synthesized and partition coefficients for the complexes in fluorocarbon/hydrocarbon biphases were determined. Catalytic hydrogenation of acetophenone to 1-phenylethanol in benzotrifluoride at 105 °C occured in the presence of either [Ru(μ-O2CMe)(CO)2P(C6H4-4-CH2CH2(CF2)7CF3)3]2 (1) or [Ru(μ-O2CMe)(CO)2P(CH2CH2(CF2)5CF3)3]2 (2). The X-ray crystal structure of [Ru(μ-O2CMe)(CO)2P(CH2CH2(CF2)5CF3)3]2 was determined. The compound exhibited discrete regions of fluorous and non-fluorous packing.  相似文献   

10.
A modified light-fluorous Mukaiyama reagent bearing a C8F17 tag was prepared and examined in ester and amide forming condensation reactions. Following the reactions, the desired product was effectively separated from the fluorous pyridone by-product using a simple fluorous solid phase extraction.  相似文献   

11.
Zhu G  Fan J  Gao Y  Gao X  Wang J 《Talanta》2011,84(4):1124-1132
A surface molecularly imprinted polymer (MIP) was synthesized by using imidazole as the template and modified silica particles as the support material. The static adsorption, solid phase extraction (SPE) and high-performance liquid chromatography (HPLC) experiments were performed to investigate the adsorption properties and selective recognition characteristics of the polymer for imidazole and its structural analogs. It was shown that the maximum binding capacities of imidazole on the MIP and the non-imprinted polymer (NIP) were 312 and 169 μmol g−1, respectively. The adsorption was fast and the adsorption equilibrium was achieved in 30 min. The binding process could be described by pseudo-second order kinetics. Compared with the corresponding non-imprinted polymer, the molecularly imprinted polymer exhibited much higher adsorption performance and selectivity for imidazole. The selective separation of imidazole from a mixture of 1-hexyl-3-methylimidazolium bromide ([C6mim][Br]) and 2,4-dichlorophenol could be achieved on the MIP-SPE column. The recoveries of imidazole and [C6mim][Br] were 97.6-102.7% and 12.2-17.3%, respectively, but 2,4-dichlorophenol could not be retained on the column. The surface molecularly imprinted polymer presented here may find useful application as a solid phase absorbent to separate trace imidazole in environmental water samples. This may also form the basis for our research program on the preparation and application of alkyl-imidazolium imprinted polymers.  相似文献   

12.
 Analogously to the aqueous K-soap/water systems already examined, the five glycerol · (Gl)-containing systems KC n /Gl (n = 12, 14, 16, 18, 22) also built up hexagonal (Hα), lamellar (Lα), isotropic micellar (S), gel-like (G) and crystalline phases (C). These phases were identified by texture observations with a polarizing microscope, by differential scanning calorimetry measurements and by X-ray diffraction investigations. The appertaining phase regions were plotted in the binary phase diagram. Binary Gl-containing K-soap systems have the following properties. The Hα phase is built up at low soap concentration. The Lα phase is formed at high soap concentrations. The temperature of the phase transition Hα ⇆ S runs through a maximum. Increasing the chain lengths of the soaps shifts the formation of the Hα phase to lower soap concentration. A strong correlation between the chain length of K-soaps and the d values of Lα, Hα, G and C phases is found. Based on the comparison of the X-ray diffractograms of the G phase a structural model is proposed. The G phase consists of two groups of domains with two different dimensions. Received: 9 August 1999/Accepted in revised form: 20 September 1999  相似文献   

13.
Methods are described for the determination of trace and ultra trace amounts of Cd, Co, Cr, Cu, Fe, Mn, Ni and Pb in natural waters, alkali and alkaline earth salts. Separation and preconcentration of trace metals is achieved by a column solid phase extraction procedure using silica gel modified with derivatives of dithiocarbamates — Na-DDTC (sodium diethyldithio-carbamate and HMDTC (ammonium hexamethylene-dithiocarbamate) as column packing material. The influence of the sorbent preparation procedure on the degree of sorption of the trace analytes is examined for different pH values of the sample solution. Isobutylmethyl ketone (IBMK) is proposed as an effective eluent for quantitative elution of retained metal ions. Optimal instrumental parameters for ETAAS determination of preconcentrated elements in organic eluate are presented. Practical application of sorbents in analysis of natural waters and alkali and alkaline earth salts is demonstrated. Proposed preconcentration procedure combined with ETAAS determination of trace analytes allows the determination of 0.04 g l–1 Cd, 0.1 g l–1 Cr, Cu, and Mn and 0.3 g l–1 Co, Fe, Ni and Pb in natural waters and 1.10–7% Cd, 3.10–7% Cr and Mn, 7.10–7% Co, Ni and Pb and 2.10–6% Cu and Fe in alkali and alkaline earth salts.  相似文献   

14.
Novel lipophilic dendrimers as host compounds, that is, 7-15, containing crown ether moieties with different sizes as the core, surrounded by first, second or third generation poly(aromatic ether) wedges, were synthesized by the use of bis(bromomethyl)-substituted crown ethers and Fréchet-type poly(benzyl ether) dendrons as building blocks. The compounds were fully characterized.  相似文献   

15.
Studies on the conformational equilibrium for the following diols, ethane-1,2-diol (12EG, CAS 107-21-1), 2R-D-(-)-propane-1,2-diol (12PG, CAS 4254-14-2), (2S,3S)-L-(+)-butane-2,3-diol (L23BD, CAS 19132-06-0), and (2S,3R)-meso-butane-2,3-diol (m23BD, CAS 5341-95-7), are described using Gaussian ab initio calculations involving density functional theory (DFT) methods. We also report in this article results on the stability and conformation for the 1:1 water-diol complex formed by ethane-1,2-diol, propane-1,2-diol, and L- and meso-butane-2,3-diol. The relative stability of the intramolecular (internal) hydrogen bond in a range of diols (n = 2 to 6), based on ab initio geometry optimization and determination of the -O...H- distance, dOH, and -O-H...O- angle, theta, increases through the sequence 1,2 approximately equals 2,3 < 1,3 < 1,4 approximately equals 1,5 approximately equals 1,6, as judged from the bond linearity and -O...H- separation. Quantum mechanical and topological analysis of possible intramolecular hydrogen bonding in this complete series of diols provides convincing evidence for this in diols in which the hydroxyl groups are separated by three or more carbon atoms, that is, in (n, n+m) diols for m > or = 2, but not for ethane-1,2-diol or other vicinal diols, which do not satisfy Popelier's topological and electron density criteria based on the AIM theory of Bader. Based on these criteria it is unlikely that vicinal diols are in fact capable of forming an intramolecular hydrogen bond, in spite of geometric and spectroscopic data in the literature suggesting otherwise.  相似文献   

16.
Br(CH2)4Br and NaO(CH2)2CHCH2 react under suitable conditions to give Br(CH2)4O(CH2)2CHCH2 (55%), which is treated with KPPh2 to yield the ether-containing phosphine Ph2P(CH2)4O(CH2)2CHCH2 (83%). The reaction of CH3CH2OC(O)CHC(CH3)2 and BrMg(CH2)3CHCH2 in the presence of CuCl (cat.) and ClSiMe3 yields CH3CH2OC(O)CH2C(CH3)2(CH2)3CHCH2 (67%), which is reduced to an alcohol that is brominated, reacted with Grubbs’ catalyst, hydrogenated, and treated with KPPh2 to give the bis(geminally dimethylated) diphosphine Ph2P(CH2)2C(CH3)2(CH2)8C(CH3)2(CH2)2PPh2 (47% overall). The photochemical reaction of I(CF2)8I and H2CCHCH2SnBu3 yields H2CCHCH2(CF2)8CH2CHCH2 (52%), which is converted with 9-BBN to a diol (92%) that is brominated and treated with LiPR2 to give the fluorinated diphosphines R2P(CH2)3(CF2)8(CH2)3PR2 (R = a, p-tol, 67%; b, t-Bu, 69%; c, o-tol, 86%). Reactions of Br(CH2)mBr and LiPR2 similarly yield R2P(CH2)mPR2 (m/R = 8/a, 95%; 14/a, 96%; 14/p-C6H4-t-Bu, 98%). Reactions of KPPh2 with Br(CH2)mCHCH2and Br(CH2)7CH3 give the corresponding monophosphines Ph2P(CH2)mCHCH2 (m′ = 7, 82%; 10, 84%) and Ph2P(CH2)7CH3 (85%). When the former is combined with [Pt(μ-Cl)(C6F5)(tht)]2 (tht = tetrahydrothiophene), trans-(C6F5)(Ph2P(CH2)mCHCH2)2PtCl (77-70%) is isolated. When the latter (excess) is combined with trans,trans-(C6F5)(p-tol3P)2Pt(CC)4Pt(Pp-tol3)2(C6F5) (RT, 65 °C), trans,trans-(C6F5)(Ph2P(CH2)7CH3)2Pt(C C)4Pt(Ph2P(CH2)7CH3)2(C6F5) (53%) is isolated.  相似文献   

17.
Recently, MoS2 with abundant electron density in its structure attracted more attention as an adsorbent for environmental remediation. However, hard manipulation of target solution owing to high dispersibility in aqueous media restricts its application as adsorbent. Preparation of Fe3O4/MoS2 nanohybrid can solve this problem. Also, this nanohybrid improves adsorption capacities of target ions. In this work, Fe3O4 nanoparticles, MoS2 nanosheets and hybrid of these two were synthesised and then characterised by X-ray diffraction, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, Fourier transforms infrared spectra, Brunauer–Emmett–Teller surface area and vibrating sample magnetometer. Subsequently, adsorption of Ag(I) and Pb(II) ions from aqueous solution by these three adsorbents was examined in detail and compared with each other while the adsorption conditions including the pH value, contact time, dosage of sorbent, elution conditions and interfering ions have been optimised. According to obtained results, prepared nanohybrid showed enhanced adsorption capacities for both ions relative to naked Fe3O4 and MoS2. The limits of detection for Ag(I) and Pb(II) were calculated as 0.49 µg L?1 and 2.7 µg L?1, respectively, and the relative standard deviation percentages (n = 5) for Ag(I) and Pb(II) were 2.8%, and 3.0%, respectively. Furthermore, the preconcentration factors were 300 and 75 for Ag(I) and Pb(II) ions, respectively. Moreover, kinetic studies showed that pseudo-second-order model can better describe target analytes adsorption properties by every three adsorbents. Regeneration of the adsorbents was performed with HCl/thiourea mixture.  相似文献   

18.
Summary A review with 178 references on the basic principles and recent developments in the solid phase extraction is presented. New solid phases, chromatographic modes, experimental configurations and off-line and on-line automated devices are discussed.  相似文献   

19.
In chemical analysis, sample preparation is frequently considered the bottleneck of the entire analytical method. The success of the final method strongly depends on understanding the entire process of analysis of a particular type of analyte in a sample, namely: the physicochemical properties of the analytes (solubility, volatility, polarity etc.), the environmental conditions, and the matrix components of the sample. Various sample preparation strategies have been developed based on exhaustive or non-exhaustive extraction of analytes from matrices. Undoubtedly, amongst all sample preparation approaches, liquid extraction, including liquid–liquid (LLE) and solid phase extraction (SPE), are the most well-known, widely used, and commonly accepted methods by many international organizations and accredited laboratories. Both methods are well documented and there are many well defined procedures, which make them, at first sight, the methods of choice. However, many challenging tasks, such as complex matrix applications, on-site and in vivo applications, and determination of matrix-bound and free concentrations of analytes, are not easily attainable with these classical approaches for sample preparation.  相似文献   

20.
A fluorous osmium catalyst was firstly developed. It had been effectively used as recoverable and reusable catalyst in the dihydroxylation of olefins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号