首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two chiral (A)6B‐typed supramolecular cages were constructed from hydrogen‐bonded C6‐symmetric zinc porphyrin hexamers and chiral C3‐symmetric pyridyl hexadentates with a core of 1,3,5‐triphenylbenzene. Circular dichroism and molecular simulations revealed that the symmetry of the supramolecular cages switched from pseudo‐C3v to C3 with the rotational confinement of the biphenyl backbones at low temperatures, which generated conformationally chiral transfer and amplification. This unique phenomenon suggests a new strategy to develop smart materials with high sensitivity and excellent reversibility.  相似文献   

2.
The polymerization of phenylacetylene with the microheterogeneous Ti(OR)4? AlEt3 and homogeneous vanadium acetylacetonate/aluminum triethyl Ziegler–Natta catalyst systems was analyzed. The effects of some cocatalysts (e.g., pyridine and phenylacetylide) and the solvent, temperature, and time were analyzed. Both catalyst systems produced poly(phenylacetylene) (PPA) and a 1,2,4‐triphenylbenzene (1,2,4‐TPB)/1,3,5‐triphenylbenzene (1,3,5‐TPB) cyclotrimer mixture in various molar ratios. The titanium catalyst showed the lowest PPA/triphenylbenzene ratio. The 1,2,4‐TPB/1,3,5‐TPB molar ratio decreased with increasing PPA. On the basis of the spectroscopic data, PPA had a cis–transoidal stereoregular structure. The molecular mass of PPA was determined with vapor pressure osmometry and gel permeation chromatography. A mechanism for the polymerization reaction versus cyclotrimerization was proposed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1228–1237, 2005  相似文献   

3.
C2-symmetric bis(sulfonamide) ligands derived from chiral trans-(1R,2R)-cyclohexane-1,2-diamine were immobilized on silica gel and on polystyrene resin, and complexed to RhIIICp∗. The resulting complexes were used as catalysts in the asymmetric transfer hydrogenation (ATH) of acetophenone. The chiral secondary alcohol was obtained in high yields (>99%) and enantioselectivities (92%) with aqueous sodium formate as the hydride source. The immobilized catalysts were recycled with no loss in activity.  相似文献   

4.
Mono(6-(p-toluenesulfonyl))permethylated β-cyclodextrin, a versatile precursor for a wide variety of mono-functionalized permethyl β-cyclodextrins, has been generated successfully by the direct methylation of monotosylated cyclodextrin. This afforded a convenient synthesis of mono(6A-N-allylamino-6A-deoxy)permethylated β-cyclodextrin. Hydrosilylation of the chiral selector with (EtO)3SiH and reaction of the resultant reactive siloxane with pristine silica gel afforded a facile entry into a structurally well-defined chiral HPLC stationary phase.  相似文献   

5.
A ligand exchange chiral stationary phase (CSP) developed previously in this laboratory by bonding (R)-phenylglycinol derivative, sodium N-[(R)-2-hydroxy-1-phenylethyl]-N-undecylaminoacetate, to silica gel was successfully applied to the resolution of proton pump inhibitors (PPIs) including omeprazole, pantoprazole, lansoprazole and rabeprazole. For example, the separation factors (α) for the resolution of omeprazole, pantoprazole, lansoprazole and rabeprazole were 4.27, 5.28, 2.77 and 4.06, respectively, and the resolutions (RS) were 2.53, 2.55, 1.93, and 2.01, respectively, when 65% acetonitrile aqueous solution containing 0.5 mM CuSO4 and 0.05 mM triethylamine was used as a mobile phase. Based on the chromatographic behaviors for the resolution of PPI analogues on CSP 1, a chiral recognition mechanism utilizing the sulfoxide oxygen and the benzimidazole ring nitrogen of PPIs as bidentate coordination donors to form an enantioselective ternary complex with the central Cu(II) ion and the chiral stationary bidentate ligand was proposed.  相似文献   

6.
A new chiral stationary phase (CSP) containing thioester linkages was prepared by bonding (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid to mercaptopropylsilica gel. The chiral recognition ability of the new CSP was found to be greater than that of the previously reported CSP containing amide linkages in the resolution of the various α-amino acids that were tested, except for that of Met, Ser and Thr. In the resolution of racemic amines and amino alcohols, the new CSP was always better than the one containing amide linkages in terms of the separation factors (α) and the resolutions (RS). Given the identical elution orders on the two CSPs, it was concluded that the chiral recognition mechanism is not affected by the change of the linkage type. In addition, the new CSP was found to be quite stable under the acidic mobile phase conditions that were utilized, indicating that the thioester linkage is useful as a tethering group.  相似文献   

7.
通过Suzuki缩合反应制备了一系列新型不同超支化结构的9,9-二辛基芴-联二噻吩交替共聚物(HF8T2s).以手性溶剂(R)-(+)-/(S)-(-)-柠檬烯为手性源,在三氯甲烷/((R)-(+)-或(S)-(-)-)柠檬烯/甲醇混合溶剂体系里,通过溶剂手性转移技术,制备了分别以三苯胺、三苯基苯和螺二芴为支化单元的超支化聚(9,9-二辛基芴-联二噻吩)手性荧光纳米粒子.在混合溶剂中形成的荧光纳米粒子的手性来源于手性溶剂(R)-(+)-/(S)-(-)-柠檬烯.以三苯胺为支化单元时,支化单元的含量为4.56%时聚合物的手性信号最强,支化单元的含量为6.76%时聚合物的手性信号消失.以三苯基苯和螺二芴为支化单元时,支化单元的含量分别为1.85%(三苯基苯)和1.78%(螺二芴)时聚合物的手性信号最强,支化单元的含量较高(三苯基苯:4.68%和6.56%,螺二芴:4.54%和6.54%)时聚合物的手性信号消失.以超支化聚合物HF8T2-TRA2(三苯胺为支化单元,支化单元含量为1.90%)为例,考察了超支化聚合物重复单元浓度、弱溶剂的种类、弱溶剂与手性溶剂比例和(R)-(+)-柠檬烯与(S)-(-)-柠檬烯比例对超支化聚合物圆二色谱光谱强度的影响.当超支化聚合物重复单元浓度为5.0×10-5mol/L,使用甲醇为弱溶剂,三氯甲烷/((R)-(+)-或(S)-(-)-)柠檬烯/甲醇之间的配比为0.3∶1.8∶0.9(V/V/V)时,超支化聚合物圆二色谱光谱强度最强.在三氯甲烷/((R)-(+)-或(S)-(-)-)柠檬烯/甲醇(0.3∶1.8∶0.9(V/V/V))混合溶剂中,聚合物重复单元浓度为5.0×10-5mol/L,超支化聚合物在350~550 nm有较强的紫外吸收,在450~700 nm有较强的荧光发射,组装成的荧光纳米粒子尺寸约为500~2000 nm.  相似文献   

8.
《Tetrahedron》2004,60(2):415-427
Several o-dibenzylic diols were prepared reacting organometallics with o-phthalaldehyde at room temperature in ether. The identity of the meso and C2-symmetrical (d,l) isomers as well as their ratio were determined by chiral gas chromatography. The meso and C2 (racemic) stereoisomeric diols were easily separated by flash chromatography on silica gel. A set of 18 α,β-unsaturated acetals were then prepared reacting those, as well as commercially available 1,2, 1,3 and 1,4 diols, with the corresponding methylacetals in acidic medium. A trans-acetalisation procedure adapted to the cases of fragile allylic alcohols or unfavorable 1,6 diols-derived dioxonanes based on a Dean-Stark trapping of methanol was also employed.  相似文献   

9.
A novel cyclodextrin derivative: mono(6A-N-allylamino-6A-deoxy)perphenylcarbamoylated β-cyclodextrin was synthesized. Hydrosilylation with (EtO)3SiH and then reaction of the reactive siloxane with pristine silica gel afforded a facile entry into a durable, structurally well-defined chiral stationary phase capable of enantioseparation of a variety of racemic drugs.  相似文献   

10.
Three dendrimers were synthesized directly on aminated silica gel using (1R, 2R)-(+)-1,2-diphenylethylenediamine and 1,3,5-benzenetricarbonyl trichloride as building blocks. The chiral stationary phases were obtained by modification of these dendrimers with phenyl isocyanate. All derivatives prepared on silica gel were characterized by FTIR spectrum, solid-state 1H NMR and elemental analysis. The enantioseparation ability of the chiral stationary phases was preliminarily evaluated by high-performance liquid chromatography. The chiral stationary phase of one-generation dendrimer exhibited best enantioseparation ability.  相似文献   

11.
《Tetrahedron: Asymmetry》2001,12(16):2343-2349
The BF3·OEt2-promoted aldol reaction of chiral syn- and anti-α-methyl-β-siloxy aldehydes with a silyl ketene acetal resulted in essentially complete syn Felkin selection. Even in the asymmetric aldol reaction using chiral oxazaborolidinones, the substrate control with respect to diastereoselection was found to overcome the promoter (catalyst) control which would normally occur depending on the stereocenter of the chiral boranes.  相似文献   

12.
Hexachlorocyclotriphosphazene N3P3Cl6 and gem-disubstituted cyclotriphosphazene derivatives N3P3Cl4X2 (X = Ph, PhS, PhNH) were reacted with N-methyl-1,3-propanediamine and 3-amino-1-propanol to give compounds (9a-12a, 9b-12b) which exist as cis and trans geometric isomers and are two different racemic isomers, respectively to describe the stereogenic properties of a series of chiral cyclotriphosphazene compounds with two different centres of chirality. The geometric isomers were separated by column chromatography on silica gel and analysed by elemental analysis, mass spectrometry, and 31P and 1H NMR spectroscopies, and also the geometric forms (cis or trans) of 9b, 10a, 11a, 11b and 12a have been determined by the X-ray crystallography. The enantiomers of all racemic compounds have been analysed by the changes in 31P NMR spectra on addition of a Chiral Solvating Agent (CSA), (R)-(+)-2,2,2-trifluoro-1-(9′-anthryl)ethanol. On the other hand, the racemic forms of chiral cyclotriphosphazene derivatives have been confirmed by contribution of chiral HPLC methods which have been developed for this study.  相似文献   

13.
A straightforward synthesis of enantiopure (S)- and (R)-α-Tfm-pyroglutamic acid is reported. The strategy is based on the use of a chiral CF3-hydroxymorpholinone intermediate conveniently obtained from ethyl trifluoropyruvate-based chiral CF3-oxazolidines (Fox). The key step is an oxidative cyclization followed by a reductive cleavage of the (R)-phenylglycinol chiral auxiliary.  相似文献   

14.
A range of alkyl- or aryl-substituted iron succinoyl complexes, incorporating the iron chiral auxiliary [(η5-C5H5)Fe(CO)(PPh3)], were prepared in high regio- and diastereoselectivities by employing four successful strategies: (i) the alkylation of chiral enolate equivalents with tert-butyl bromoacetate; (ii) the mutual kinetic resolution of tert-butyl α-bromoacetate with a chiral acetate enolate equivalent; (iii) the alkylation of chiral succinoyl enolate equivalents; (iv) the conjugate addition of organolithium reagents or lithium amide reagents to chiral fumaroyl derivatives. Oxidative cleavage of the iron chiral auxiliary was shown to occur without compromising the stereochemical integrity of the succinoyl fragments.  相似文献   

15.
A pair of pseudo-enantiomers, tertiary amine appended trans-4-hydroxyproline derivatives were designed, synthesized, and evaluated as chiral selectors for enantiomer analysis of DNB-amino acid and their amides, in single-stage electrospray ionization/mass spectrometric experiments. The chiral selectors were designed to remove the interaction of the hydroxyl group of trans-4-hydroxyproline as well as separate the ionization site from the sites required for effective chiral recognition. Addition of a chiral analyte to a solution containing two pseudo-enantiomeric chiral selectors, affords selector-analyte complexes in the electrospray ionization mass spectrum where the ratio of these complexes is dependent on the enantiomeric composition of the analyte. The relationship between the ratio of the selector-analyte complexes in the electrospray ionization mass spectrum and the enantiomeric composition of the analyte can be used to relate the extent of the measured enantioselectivity and for quantitative enantiomeric composition determinations. Effects of acid modifiers (ammonium chloride, acetic acid, formic acid and hydrochloric acid) and instrument conditions on the selector-analyte ion intensity and the enantioselectivity (αMS) were investigated. The largest αMS was observed using ammonium chloride at a concentration around 0.5-1 mM at desolvation temperature of 150 °C. Capillary voltage has little effects on αMS values. The sense of chiral recognition by MS is consistent with what is observed chromatographically. Quantitative enantiomeric composition determinations for N-(3,5-dinitrobenzoyl) leucinyl butylamide were performed. A comparison to the enantioselectivities towards a scope of analytes observed by chiral HPLC using a 3,5-dimethylanilide-proline-derived chiral stationary phase, is presented.  相似文献   

16.
A highly enantioselective addition of trimethylsilylcyanide to aldehydes catalyzed by chiral titanium complexes is described. The chiral titanium complexes were prepared in situ from Ti(OiPr)4 and β-hydroxyamide ligands, that could easily be synthesized from ketopinic acid and C2 symmetrical chiral diamines in a small number of steps.  相似文献   

17.
Novel chiral receptors based on l-phenylalanine and l-valine have been synthesized and their chiral recognition properties toward mandelic acid and N-tosyl α-amino acids are studied. The phenylalanine-based receptor undergoes enantioselective gel formation with R-mandelic acid and N-tosyl-d-valine, whereas the valine-linked receptor in their presence results in the formation of precipitates.  相似文献   

18.
A novel, validated, reversed-phase (RP), chiral high performance liquid chromatography (HPLC) method was developed for the enantiopurity control analysis of naproxen, a frequently used non-steroidal anti-inflammatory agent using polysaccharide-type chiral stationary phase (CSP). In the screening phase of method development, seven columns were tested in polar organic (PO) mode using mobile phases consisting of 0.1% acetic acid in methanol, ethanol, 2-propanol, and acetonitrile. Enantiorecognition was observed only in five cases. The best enantioseparation was observed on a Lux Amylose-1 column with 0.1% (v/v) acetic acid in ethanol with a resolution (Rs) of 1.24. The enantiomer elution order was unfavorable, as the distomer eluted after the eutomer. When the ethanolic mobile phase was supplemented with water, enantiomer elution order reversal was observed, indicating a difference in the enantiorecognition mechanism upon switching from PO to RP mode. Furthermore, by changing ethanol to methanol, not only lower backpressure, but also higher resolution was obtained. Subsequent method optimization was performed using a face-centered central composite design (FCCD) to achieve higher chiral resolution in a shorter analysis time. Optimized parameters offering baseline separation were as follows: Lux Amylose-1 stationary phase, thermostated at 40 °C, and a mobile phase consisting of methanol:water:acetic acid 85:15:0.1 (v/v/v), delivered with 0.65 mL/min flow rate. Using these optimized parameters, a Rs = 3.21 ± 0.03 was achieved within seven minutes. The optimized method was validated according to the ICH guidelines and successfully applied for the analysis of different pharmaceutical preparations, such as film-coated tablets and gel, as well as fixed-dose combination tablets, containing both naproxen and esomeprazole.  相似文献   

19.
A convenient access to enantiopure β-amino ketones through a multicomponent reaction of dialkyl zinc reagents, cyclic enones and chiral N-tert-butanesulfinimines is disclosed. Four diastereoisomers can be selectively obtained by the appropriate choice of the chiral ligand (L or ent-L) and the chiral N-sulfinimine (RS or SS). The protocol is particularly efficient when enolisable N-sulfinimines are used.  相似文献   

20.
Sixteen new chiral alcohols with alkyl (C11–C19) and aryl, substituted aryl, hetero aryl and biaryl groups 2a2t were synthesized by three different asymmetric reduction methods from their corresponding ketones 1a1t. Chiral NaBH4 (method A), chiral BH3 (method B) and chiral AIP (method C) were used as asymmetric reduction catalysts. Chiral NaBH4 was modified by four different ligands 3a3d, chiral BH3 and chiral AIP by four different ligands 4a4d. Ligand 4c was synthesized for the first time in this work. Chiral NaBH4 generated chiral alcohols of (R)-configuration and chiral BH3 and chiral AIP of (S)-configuration with high enantiomeric excesses, were analysed by chiral HPLC. In order to determine the ee values by chiral HPLC, sixteen corresponding racemic alcohols, synthesized by reducing their corresponding ketones via NaBH4, were used for chiral resolution on a Daicel OD HPLC column. The sixteen starting ketones were synthesized in this study by Friedel–Craft acylation. The new chiral alcohols were characterized by IR, NMR, (1H and 13C), MS, elemental analyses and specific rotation. The reduction methods A, B and C were applied to these ketones for the first time in this study and were compared with each other. The relationship between the structure of the ketone and the yield and the enantiomeric excess was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号