首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A diastereomeric mixture of racemic α-amino nitriles [1SR,2RS,(SR)]- (1) and [1SR,2RS,(RS)]-N-cyano(phenyl)methyl-1-aminoindan-2-ol (2) was thermally epimerized in the solid state to give diastereopure [1SR,2RS,(SR)]-1. The reaction was about 26 times slower than the same reaction of a mixture of their enantiopure counterparts, showing that different mechanisms operated between the two transformations. X-ray crystallographic analysis revealed that in the former transformation, racemic-compound crystals of 2 were converted into conglomerate crystals of 1, while in the latter, enantiomeric crystals of 2 were converted into enantiomeric crystals of 1. The difference in the reactivity toward the epimerization between the racemic and the enantiopure mixture could be rationalized by the difference in the stability of compound 2 in the two crystal forms.  相似文献   

2.
The reaction of octafluoro-2,3-epoxybutane 1 with 2-aminothiophenol gave three kinds of novel fluorocontaining N,S-heterocyclic compounds depending on the solvent nature: 2,3-bis(trifluoromethyl)-3,4-dihydro-2H-1,4-benzothiazin-2-ol 2, 2-trifluoromethyl-2-[1-(2-aminophenylthio)-2,2,2-trifluoroethyl]-1,3-benzothiazolidine 6 and 5a,11a-bis(trifluoromethyl)-5a,6,11a,12-tetrahydro-5,11-dithia-6,12-diazanaphthacene 5. Use of the toluene, dioxane, tetrahydrofuran, acetonitrile and dimethoxyethane gave the unexpected dihydrobenzothiazine 2 (RS,SR > RR,SS) in good to moderate yields. In dimethylsulfoxide and N,N-dimethylacetamide, unusual cyclization occurred resulting in benzothiazolidine 6 (RS,SR/RR,SS ∼ 1:1) in moderate yields. Formation of minor 1,1,1,3,4,4,4-heptafluoro-3-(2-aminophenylthio)-2,2-dihydroxybutane 4 which was converted into bis(benzothiazine) 5 was observed in all solvents tested with the exception of toluene and dioxane. The molecular structure of the RS,SR-diastereomer of dihydrobenzothiazine 2, bis(benzothiazine) 5 and the RS,SR-diastereomer of benzothiazolidine 6 has been established by X-ray crystallography.  相似文献   

3.
A series of (±)3-hydroxyl- and 2,3-dihydroxy-2,3-dihydro-7-oxopyrido[3,2,1-de]acridines were synthesized for antitumor evaluation. These agents can be considered as analogues of glyfoline or (±)1,2-dihydroxyacronycine derivatives. The key intermediates, 3,7-dioxopyrido[3,2,1-de]acridines (15a,b or 24a,b), for constructing the target compounds were synthesized either from 3-(N,N-diphenylamino)propionic acid (14a,b) by treating with Eaton’s reagent (P2O5/MsOH) (Method 1) or from (9-oxo-9H-acridin-10-yl)propionic acid (23a-c) via ring cyclization under the same reaction conditions (Method 2). Compounds 15a,b and 24a,b were converted into (±)3-hydroxy derivatives (25a-d), which were then further transformed into pyrido[3,2,1-de]acridin-7-one (28a-d) by treating with methanesulfonic anhydride in pyridine via dehydration. 1,2-Dihydroxylation of 28a-d afforded (±)cis-2,3-dihydroxy-7-oxopyrido[3,2,1-de]acridine (29a-d). Derivatives of (±)3-hydroxy (25a,b) and (±)cis-2,3-dihydroxy (29a-d) were further converted into their O-acetyl congeners 26a,b and 30a-d, respectively. We also synthesized 2,3-cyclic carbonate (31, 32, and 33) from 29a-c. The anti-proliferative study revealed that these agents exhibited low cytotoxicity in inhibiting human lymphoblastic leukemia CCRF-CEM cell growth in culture.  相似文献   

4.
Machiko Ono  Yuki Shida 《Tetrahedron》2007,63(41):10140-10148
(±)-(4,5-anti)-4-Benzyloxy-5-hydroxy-(2E)-hexenoic acid 6 was subjected to δ-lactonization in the presence of 2,4,6-trichlorobenzoyl chloride and pyridine to give the α,β-unsaturated-δ-lactone congener (±)-7 (87% yield) accompanied by trans-cis isomerization. This δ-lactonization procedure was applied to the chiral synthesis of (+)-(4S,5R)-7 or (−)-(4R,5S)-7 from the chiral starting material (+)-(4S,5R)-6 or (−)-(4R,5S)-6. Deprotection of the benzyl group in (+)-(4S,5R)-7 or (−)-(4R,5S)-7 by the AlCl3/m-xylene system gave the natural osmundalactone (+)-(4S,5R)-5 or (−)-(4R,5S)-5 in good yield, respectively. Condensation of (−)-(4R,5S)-5 and tetraacetyl-β-d-glucosyltrichloroimidate 22 in the presence of BF3·Et2O afforded the condensation product (−)-8 (97% yield), which was identical to tetra-O-acetylosmundalin (−)-8 derived from natural osmundalin 9.  相似文献   

5.
(±)-Untenone A, one of the marine cyclopentanoids, has been conveniently synthesized via (±)-cis-1-hexadecylcyclopent-2-en-1,4-diol 9 which has been produced from 1-hexadecylcyclopenta-1,3-diene 6 via photo-oxidation and the following reduction. The key step of the present synthesis is the selective alkylation of cyclopenta-1,3-diene to form 6. Optically active (−)- and (+)-untenone A have been prepared from (−)- and (+)-9, respectively, after enzymatic kinetic resolution of (±)-9.  相似文献   

6.
Enantiomerically pure 2,8-diazabicyclo[3.2.1]oct-2-ene derivatives (+)-5 and (−)-5 have been obtained from 2-azido-3-tosyl-7-azabicyclo[2.2.1]heptanes (+)-1 and (−)-2 and their enantiomers, by ring expansion under radical conditions. Compounds (+)-5 and (−)-5 were transformed into hemiaminals 9 ((3S,4R,5R)- and 10 ((3R,4S,5S)-5-(2-aminoethyl)-2,3,4-trihydroxypyrrolidine) that are good inhibitors of α-mannosidases.  相似文献   

7.
The novel optically active derivatives of 2,2′-disubstituted-1-aminocyclopropane-1-carboxylic acid (−)-2 and (+)-3 were synthesised from the spiro-azlactone (+)-1. Oxidation of the diol moiety of (+)-3 gave by ring enlargement the racemic mixture of 2,3-dihydrofuran derivative (±)-6. This conversion is explained by stepwise rearrangement of the initially formed tetrasubstituted cyclopropanecarbaldehyde 4 through zwitterionic's reactive intermediate 5. The formation of (±)-6 is preferred energetically as established by ab initio calculations of the ground states and possible intermediates for that rearrangement. The crystal structure and absolute configuration of the compounds (+)-1, (−)-2, (+)-3 and (−)-7 were determined by single-crystal X-ray diffraction method. All four compounds possess Z-configuration of the cyclopropane ring. The dioxolane ring in the structures (+)-1 and (−)-2 adopts half-chair conformation, while the cyclopropane ring and geminally substituted groups in the structures (−)-2, (+)-3 and (−)-7 possess the anticlinal conformation. The molecules of the compound (+)-1 are connected by very weak intermolecular hydrogen bond of C-H?O type. In the compounds (−)-2, (+)-3 and (−)-7inter- and intramolecular hydrogen bonds of N-H?O type were observed. The spiro-compound (+)-1 exhibited a more pronounced inhibitory activity against the proliferation of murine leukemia and human T-lymphocytes cells than other type of tumor cell lines and normal human fibroblast cells.  相似文献   

8.
Yuji Takashima 《Tetrahedron》2010,66(1):197-2519
A general approach to the (S)- and (R)-isoflavans was invented, and efficiency of the method was demonstrated by the synthesis of (S)-equol ((S)-3), (R)-sativan ((R)-4), and (R)-vestitol ((R)-5). The key step is the allylic substitution of (S)-6a (Ar1=2,4-(MeO)2C6H3) and (R)-6b (Ar1=2,4-(BnO)2C6H3) with copper reagents derived from CuBr·Me2S and Ar2-MgBr (7a, Ar2=4-MeOC6H4; 7b, 2,4-(MeO)2C6H3; 7c, 2-MOMO-4-MeOC6H3), furnishing anti SN2′ products (R)-8a and (S)-8b,c with 93-97% chirality transfer in 60-75% yields. The olefinic part of the products was oxidatively cleaved and the Me and Bn groups on the Ar1 moieties was then removed. Finally, phenol bromide 9a and phenol alcohols 9b,c underwent cyclization with K2CO3 and the Mitsunobu reagent to afford (S)-3 and (R)-4 and -5, respectively.  相似文献   

9.
Olena Affolter 《Tetrahedron》2009,65(33):6626-4417
Baeyer-Villiger oxidations of several tropane derivatives have been investigated. Whereas tropenones 15a-c underwent exclusive epoxidation to 21a-c, the corresponding 6-oxotropane derivative 28 yielded the desired lactone 29. Baeyer-Villiger oxidation was also possible for the O-isopropylidene-protected diols 32a,b. The resulting lactones 33a,b were employed in the total synthesis of (±)-7a-epi-hyacinthacine A1 (7a-epi-7) via an intramolecular nucleophilic alkyllithium addition to a carbamate as the key lactamization step. The target compound was prepared from tropenone 15b in 10 steps and 14% overall yield. Enzymatic resolution of pyrrolidine (±)-36 provided a formal total synthesis to both enantiomers of 7.  相似文献   

10.
Sb-chirogenic organoantimony compounds (±)-5a-c bearing heteroatom moieties such as 4,4-dimethyl-2-oxazolinyl, methoxymethyl, and diphenylphosphanyl substituents on the o-position of an aryl group have been prepared by nucleophilic displacement of the ethynyl moiety on (1-naphthyl)(phenylethynyl)(p-tolyl)stibane (3) with aryllithium reagents (2a-c). The optical resolution of the racemic (±)-5a,b was attained via separation of a diastereomeric mixture of their palladium complexes (S)-7 formed from the reactions of (±)-5a,b with di-μ-chlorobis[(S)-dimethyl(1-ethyl-α-naphthyl)aminato-C2,N]dipalladium(II) (6). The enantiomerically pure Sb-chirogenic stibanes isolated here were optically stable, and no racemization on the chiral antimony center was observed even when they were allowed to stand at room temperature for over 72 h in chloroform. The structure of 5a,b including the absolute configuration was determined by single crystal X-ray analyses of (+)-5aB and antimony-palladium complex (7bB), respectively. The analyses also revealed the presence of intramolecular interaction between the antimony and sp2-nitrogen atoms in the molecule Sb(S)-(+)-5aB.  相似文献   

11.
A synthesis of functionalized phenolic α-amino-alcohol (±)-13 as synthetic precursor of the catechol tetrahydroisoquinoline structure of phthalascidin 650 is disclosed. Starting from 3-methylcatechol 5, eight steps of synthesis give rise to the synthesis of phenolic α-amino-alcohol (±)-13 in 27% overall yield. This synthetic strategy involves the elaboration of fully functionalized aromatic aldehyde 8 and its transformation into a phenolic α-amino-alcohol (±)-13, through a Knoevenagel condensation, simultaneous reduction of nitroketene and ester functions and hydrogenolysis of the benzyl protecting group. The pentacycle (±)-18 was obtained after four additional steps. The Pictet-Spengler cyclisation between the phenolic α-amino-alcohol (±)-13 and N-protected α-amino-aldehyde 4 allowed to obtain (1,3′)-bis-tetrahydroisoquinoline 14 with N-methylated and N-Fmoc removed. The last step was a Swern oxidation for allowing an intramolecular condensation.  相似文献   

12.
Full details of the biomimetic conversion of polyene metabolite spectinabilin (5) into the isomeric natural products SNF4435C (1) and SNF4435D (2) by a cascade of E/Z-isomerizations and electrocyclizations are reported. Additionally, short total syntheses of the related natural products (±)-aureothin (3), (±)-N-acetyl-aureothamine (4) and (±)-spectinabilin (5) are presented. The key steps in the synthesis of (±)-3, (±)-4 and (±)-5 are the construction of the tetrahydrofuran motif using a palladium-catalyzed cycloaddition and the ruthenium-catalyzed cross metathesis of alkene 17 to form the common intermediate, boronic ester 24, which was further transformed using a trans-selective Suzuki coupling with a dibromide and a stereospecific Negishi-type methylation.  相似文献   

13.
Dibenzylideneacetone (8) reacts with in situ-generated allylindium halide reagents to yield the product of a homoallyl-cyclopropanation reaction: 2-(3″-butenyl)-1,1-bis[(E)-2′-phenylethenyl]cyclopropane (9), which proceeds via step-wise cleavage of the CO bond and delivery of two allyl fragments from the reagent. A range of enantiomerically enriched ligands have been tested as stoichiometric asymmetric modifiers for this process. Enantiopure compounds such as cinchona alkaloids, ephedra, aminoalcohols and tartaric acid derivatives, which have proven of utility as asymmetric modifiers for the indium-mediated allylation of aldehydes and ketones, were very inefficient in the process 89. However, mandelic acid derivatives, in particular mandelates, were found to be of significant potential. The absolute stereochemistry of the cyclopropane 9 has been determined by degradation to 1,1-dicarboxymethyl-2-butylcyclopropane, converging with an independent enantioselective synthesis starting from hexene. Under optimised conditions, viz. using allylindium iodide reagents and working-up with aqueous Na2SO3 to avoid iodine-mediated polymerisation, (S)-9 can be generated in 86% yield and with (S)-methyl mandelate as modifier useful enantiopurity (94/6 er) was observed. The cyclopropane product ((S)-9) undergoes RCM using standard conditions to afford a norcarene unit ((1S,6S)-1-(E)-2′-(phenylethenyl)-bicyclo[4.1.0]hept-2-ene) without loss of enantiopurity.  相似文献   

14.
We describe an intriguing new example of a parallel kinetic resolution; an asymmetric cyclization-carbonylation of propargyl ketols catalyzed by palladium(II) with chiral bisoxazoline (box) ligands. The 2S,3S enantiomer of (±)-6 was preferentially converted to 13 (45-49% yields, 37-46% ee), and the 2R,3R enantiomer of (±)-6 was preferentially converted to 14 (21-23% yields, 92-97% ee). As an application of this reaction, formal synthesis of (+)-bakkenolide A was achieved.  相似文献   

15.
The preparation of (+)- and (−)-12 by resolution of (±)-12 with (R)-N-phenylpantolactam, (R)-13, is described. From (+)- and (−)-12 a series of chiral bisnoradamantane derivatives, whose chirality stems from substitution at the bridgehead positions, have been obtained in both enantiomeric forms.  相似文献   

16.
Enantioenriched tertiary homoallylic alcohol derivatives (S)-2c and (S)-2a were obtained via Evans aldol methodology and enzymatic resolution of racemic tertiary acetate 2e, respectively. In order to study asymmetric 1,3-induction of the stereogenic center present in 2, congener (R)-2a as well as its O-protected derivatives (R)-2b-d were submitted to Sharpless asymmetric dihydroxylation to yield the diastereomeric 1,2,4-triol derivatives (2R,4R)- and (2S,4R)-3a-d, revealing that neither the substrate nor the Sharpless catalyst exert any stereocontrol. Similar observations were made for the less bulky alkynyl-substituted derivative 12b. However, by using a directed dihydroxylation, the anti product (2R,4R)-3a was favored.  相似文献   

17.
A new non-C2-symmetrical antimony-phosphorous ligand, (±)-2-diphenyl-phosphano-2′-di(p-tolyl)stibano-1,1′-binaphthyl (BINAPSb) 3, has been prepared from 2-bromo-2′-diphenylphosphano-1,1′-naphthyl 4 via its borane complex 6, and could be resolved by the separation of a mixture of the diastereomeric palladium complexes 8A and 8B derived from the reaction of (±)-3 with optically active palladium reagent (S)-7. The enantiomerically pure BINAPSb 3 has proved to be highly effective in the palladium-catalyzed asymmetric hydrosilylation of styrene as a chiral auxiliary.  相似文献   

18.
Sesquiterpenoids (+)-trans-dracuncuflifoliol (1) and (+)-4-hydroxyoppositan-7-one (2) were prepared stereoselectively from enantiomerically pure (7aR)-7a-methyl-1,2,5,6,7,7a-hexahydro-4H-inden-4-one ((−)-6), whose synthesis was described herein. Conjugate addition of the organocopper (I) reagent 10 to (−)-6, followed by epimerization of the ring junction, generated 3 of the 4 contiguous chiral centers of both natural products.  相似文献   

19.
Nicolas Robert 《Tetrahedron》2007,63(18):3702-3706
A concise enantiopure synthesis of six monoterpenic alkaloids of the actinidine series possessing a cyclopenta[c]pyridine skeleton, (+)-deoxyrhexifoline (4), (+)-boschniakinic acid (5), (+)-boschniakine (6), (−)-plantagonine (7), (−)-indicaine (8) and (−)-tecostidine (9) is reported starting with the chiral precursor 3-bromo-5-((4R)-phenyloxazolin-2-yl)pyridine (10). It involves a C-4 regioselective connection of a butene appendice and an intramolecular 5-exo-trig Heck annulation sequence followed by hydrogenation of the exocyclic alkene. Mixture of (3R)- and (3S)-7-((4R)-phenyloxazolin-2-yl)cyclopenta[c]pyridines was separated by HPLC before being transformed into enantiopure natural products (4-9) by modification of the oxazoline group.  相似文献   

20.
The asymmetric synthesis of new tetrahydropyrrolo[2,3-b]indole 19 and tetrahydropyrano[2,3-b]indole 20 rings, substituted in position C-3a and C-4a with a hydroxy- and an amino functionalized chain, respectively, was performed starting from the racemic spiro[cyclohexane-1,3′-indoline]-2′,4-diones 7. The enantiopure spiro oxo-azepinoindolinone (+)-10, obtained from (±)-7 by the way of an asymmetric ring enlargement, and the amino acid (+)-14, obtained by the hydrolysis of 10, were prepared as key intermediates for the synthesis of enantiopure compounds (−)-19 and (−)-20. Since the amino acid 14 is the common intermediate for the chemoselective preparation of derivatives 19 and 20, experimental and computational studies were performed in order to selectively obtain these compounds and to provide a mechanistic rationalization for their formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号