首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A problem of regular (symmetric and asymmetric) interaction of plane shock waves in a steady-state dusty-gas flow is considered. The possibility of the formation of wave structures is revealed, in which either all or some of the incident or reflected waves degenerate into fully dispersed waves, i.e. zones in which the parameters of both phases vary continuously. Using the Rankine-Hugoniot relations for a one-velocity “effective-gas” model, the ranges of nondimensional governing parameters (the Mach number, the angles between the incident waves and the free stream, the phase specific-heat ratio, and the particle mass concentration) are found, which correspond to different wave configurations. In the framework of a two-fluid dusty-gas model, the flow structure in the region of symmetric interaction of the shocks is calculated numerically for typical configurations containing fully dispersed waves. The flow in the region of a normal fully dispersed wave is also calculated. Good agreement between the calculated wave structure and the data known in the literature is obtained. A range of governing parameters in which the carrier-phase temperature has a local maximum inside the wave structure is found.  相似文献   

2.
Nonlinear acoustic wave propagation is considered, for a signal which is initially sinusoidal at the input radius, subject to the effects of spherical spreading, exponential density stratification with altitude, and thermoviscous dissipation. A model equation is derived giving the signal variation along each straight line ray from centre of symmetry, and in the form of a Generalized Burgers Equation. This equation is studied in the small-dissipation limit. It is shown that along rays above the horizontal, shocks quickly form, but then rapidly thicken, the wave eventually dying in linear old age, with amplitude saturation. On rays below the horizontal shocks may or may not form, depending on the relation of the ray to an “initial shock curve” which is determined analytically. When shocks do form, they become increasingly thin with increasing distance, while outside them nonlinear effects become small and the main part of the wave evolves under linear non-dissipative mechanisms alone, displaying no trace of amplitude saturation.  相似文献   

3.
陈达  宁建国  李健 《力学学报》2021,53(10):2865-2879
气相爆轰波在周期性非均匀介质中的起爆, 稳态传播和失效机制都极为复杂, 很多物理机制尚不明确, 是当前爆轰物理领域研究的热点和难点. 本文使用反应欧拉方程和两步化学反应模型对爆轰波在非均匀介质中的传播机理进行了数值模拟研究, 非均匀性由横向周期性分布的温度扰动体现, 重点分析不同波长、不同幅度的温度扰动对波阵面波系结构的影响. 计算结果表明, ZND爆轰波在温度扰动下向胞格爆轰波的转变主要受制于两种竞争性因素: 一是爆轰波内在的不稳定性; 二是温度扰动的波长和幅度, 前者是内因, 后者是外因. 温度扰动的存在抑制横波的发展, 延迟了ZND爆轰波向胞格爆轰波的演化, 并且内在不稳定性的增加可以减慢这种延迟现象. 这说明, 温度扰动可以在一定的范围内抑制胞格不稳定性的发展, 但是不能够终止这一过程. 温度的不连续性使得爆轰波阵面更为扭曲, 并在横波附近存在较弱的三波点结构, 即温度扰动可增加爆轰波固有的不稳定性, 改变爆轰波阵面的传播机理. 幅值较大的人工温度扰动可抑制爆轰波的传播和爆轰波自身的不稳定性. 爆轰波阵面胞格结构的形成取决于温度扰动与其自身的不稳定性.   相似文献   

4.
Recent results on fluid–structure interaction for plates subject to high intensity air shocks are employed to assess the performance of all-metal sandwich plates compared to monolithic solid plates of the same material and mass per area. For a planar shock wave striking the plate, the new results enable the structural analysis to be decoupled from an analysis of shock propagation in the air. The study complements prior work on the role of fluid–structure interaction in the design and assessment of sandwich plates subject to water shocks. Square honeycomb and folded plate core topologies are considered. Fluid–structure interaction enhances the performance of sandwich plates relative to solid plates under intense air shocks, but not as significantly as for water blasts. The paper investigates two methods for applying the loading to the sandwich plate—responses are contrasted for loads applied as a time-dependent pressure history versus imposition of an initial velocity.  相似文献   

5.
The formation and propagation of shock waves in a two-component flowing bubbly mixture has been investigated experimentally. The structure of shock waves formed by steepening of compression waves is compared with the corresponding features of shocks produced spontaneously in shock tubes. Experimentally determined values of the speed of propagation of the shock compare favorably with the Hugoniot relationship based upon a homogeneous two-phase model. The effect of the gravitational and frictional pressure gradients on the shock characteristics is also examined.  相似文献   

6.
Focusing of strong shock waves in a gas-filled thin convergence chamber with various forms of the reflector boundary is investigated experimentally and numerically. The convergence chamber is mounted at the end of the horizontal co-axial shock tube. The construction of the convergence chamber allows the assembly of the outer chamber boundaries of various shapes. Boundaries with three different shapes have been used in the present investigation—a circle, an octagon and a smooth pentagon. The shock tube in the current study was able to produce annular shocks with the initial Mach number in the range M s = 2.3 − 3.6. The influence of the shape of the boundary on the shape and properties of the converging and reflected shock waves in the chamber has then been investigated both experimentally and numerically. It was found that the form of the converging shock is initially governed by the shape of the reflector and the nonlinear interaction between the shape of the shock and velocity of shock propagation. Very close to the center of convergence the shock obtains a square-like form in case of a circular and octagonal reflector boundary. This is believed to stem from the instability of the converging shock front triggered by the disturbances in the flow field. The outgoing, reflected shocks were also observed to be influenced by the shape of the boundary through the flow ahead as created by the converging shocks.  相似文献   

7.
The process of propagation of shock waves in two-component mixtures is considered. The studies were performed within the framework of the two-velocity approximation of mechanics of heterogeneous media with account of different pressures of the components. The stability of propagation of all types of stationary shock waves (fully dispersed, frozen-dispersed, dispersed-frozen, and frozen shock waves of two-front configuration) to infinitesimal and finite perturbations is shown numerically, using the method of coarse particles. The problem of initiation of shock waves (the formation of different types of shock waves from stepwise initial data) is solved. Flows in the transonic range relative to the speed of sound in the first component are obtained. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 1, pp. 55–63, January–February 1999.  相似文献   

8.
A study is made of the formation of a shock wave (bore), produced by the movement of an initially weak discontinuity in the spatial derivatives of velocity and liquid depth in an area of stationary current in a channel of constant inclination. The formation of shock waves from compression waves was first studied by Riman [1]. Frictional resistance was considered in the Chezy form. The equations obtained therein for determination of the moment in time and spatial coordinates of the point at which the shock wave is formed, as well as the laws for propagation of shock waves are applicable to the problem of one-dimensional transient motion in a gas, the pressure of which is dependent on density. Instantaneous collapse of waves, as well as formation and movement of bores in rivers for an idealized flow model in a channel with horizontal bottom, neglecting friction, were described by Khristianovich, Mikhlin, and Devison [2], and Stoker [3]. Recently in the work of Sachdev and Bhatnagar [4], using numerical integration of the equation for bore intensity, the problem of shock wave propagation in a channel of constant inclination with consideration of fluid resistance in the Chezy form was studied. Gradual wave collapse and the bore formation mechanism were studied by Stoker [3] on the basis of the shallow-water theory. Neglecting friction on the horizontal channel bottom, he calculated the moment of time and coordinates of the point at which the shock wave is formed in the case where the initial disturbance is sinusoidal. The dependence of these values on wave amplitude for a channel of constant inclination was obtained by Jeffrey [5], who also neglected friction on the channel bottom and considered the initial disturbance to be sinusoidal. Lighthill and Whitham [6] discovered that for Froude numbers greater than two, the linear theory led to unlimited growth in the intensity of the flood wave. We note that the studies of flood-wave motion in the region of the first characteristic, performed in [3, 6], differ only in the forms of the resistance laws and dependences of the unknown functions on the variables. Physical peculiarities of various liquid wave motions were also examined by Lighthill in [7].Saratov. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 62–66, March–April, 1972.  相似文献   

9.
Direct shocks in flows of a high-temperature diatomic gas with rotational and vibrational degrees of freedom are considered. Gas-dynamic parameters and populations of molecular vibrational levels behind a shock are studied for the case of disturbance of vibrational equilibrium in an incident flow.  相似文献   

10.
Flow blockages are used to promote the transition of a flame to a detonation. The structure of shock waves formed with different configurations of blockages was experimentally determined for subsonic incoming flow. High speed subsonic flows could develop ahead of a turbulent flame and the interaction of such flows with blockages could lead to the formation of interacting shock waves, slipstreams, and expansion waves. A blow-down test setup was designed to study the interacting shock pattern formed with different configurations of blockages. The flow was found to accelerate to low supersonic velocities during its passage over the blockages. The shock structure downstream of the blockages was found to depend on the shape, size, and number of blockages as well as the spacing between them. While a parabolic-shaped blockage provided shocks of maximum strength, large blockage ratio values did not permit the formation of shocks. The shear layer, formed in the flow downstream of the blockages, reflected the expansion fan as shock waves and was found to be a major feature influencing the formation of the interacting structure of oblique shocks. The structure and strength of the shock waves are analyzed using hodograms. The formation of the interacting family of shock waves using different configurations of blockages and the spacings between them are discussed.  相似文献   

11.
The problem of the shock-wave structure in a mixture of two compressible media with different velocities and pressures of components is considered. The problem is reduced to solving a boundary-value problem for two ordinary differential equations that describe the velocity relaxation and pressure equalization of the components. Using methods of the qualitative theory of dynamic systems on a plane, the existence and uniqueness of four types of waves are shown: (a) fully dispersed waves; (b) frozen-dispersed waves; (c) dispersed-frozen waves; (d) frozen waves of two-front configuration. A chart of solutions of the corresponding flow types is constructed in the plane of the following parameters: the initial velocity of the mixture and the initial volume concentration of one of the components. The numerical calculations conducted illustrate the obtained analytical structures of the shock wave. It is shown that the results obtained using the suggested mathematical model are in agreement with experimental data on the dependence of the velocity of the dispersed shock wave on the equilibrium pressure behind the shock-wave front for a mixture of silica sand and water. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 2, pp. 10–19, March–April, 1998.  相似文献   

12.
A numerical solution is presented for a nonlinear, one-dimensional boundary-value problem of thermoelasticity with variable volume force and heat supply in a half-space. The surface of the body is subjected to a given periodic displacement. The volume force and bulk heating simulate the effect of a beam of particles infiltrating the medium. No phase transition is considered and the domain of the solution excludes any shock wave formation. The basic equations are formulated in material coordinates, making them adequate for dealing with moving boundaries. The used numerical scheme reproduces correctly the process of coupled thermomechanical wave propagation. The presented figures display the process of propagation of the coupled nonlinear thermoelastic waves. They also show the effects of volume force and heat supply on the distributions of the mechanical displacements and temperature inside the medium. Moreover, the interplay between these two factors and the applied boundary disturbance is outlined. The presented solutions, however, is not meant to capture the expected process of shock formation at the breaking distance.  相似文献   

13.
We consider the convergence of solutions of conservation laws with viscosity to solutions having shocks of hyperbolic conservation laws without viscosity as the viscosity tends to zero. Our analysis reveals a rich structure of nonlinear wave interactions due to the presence of shocks and initial layers. These interactions generate four different wave patterns: initial layers, shock layers, diffusion waves and coupling waves. We study the propagation and interactions of the four wave patterns by a detailed pointwise analysis. (Accepted February 19, 1998)  相似文献   

14.
基于分数阶广义热弹性理论,针对实心球体在外表面受均匀热冲击作用下的一维广义热弹性问题进行研究分析. 利用热冲击的瞬时特征,借助于Laplace 正、反变换技术及柱函数的渐进性质,推导了热冲击作用周期内位移场、温度场和应力场的渐进表达式. 通过计算,得到了不同传热能力下受热冲击作用时热波、热弹性的传播规律以及位移场、温度场及应力场的分布规律. 结果表明:分数阶参数取值的不同,热波、热弹性波的传播以及各物理场的分布均有所不同,分数阶参数可视为延迟时间的影响因子,通过改变延迟效应对热弹性行为的影响来改变热冲击的作用效果.   相似文献   

15.
The results of a numerical study of a new type of singularities in the Mach shock-wave structure realized in supersonic nonsymmetric conical flows over V-wings with a bow shock attached to the leading edges are presented. Within the framework of the ideal gas model we study the changes in the shock system on transition, with increase in the sweep angle, from the region of nonsymmetric Mach interaction of the shocks attached to the leading edges of the wing to the region of special flow patterns, where on the windward cantilever surface a rarefaction flow is realized rather than a flow with an internal shock. It is shown, in particular, that in the region with special wing flow patterns a Mach system of shocks with a submerged shock proceeding from the branch point above the windward cantilever may exist.  相似文献   

16.
In this series of papers, we examine the propagation of waves of finite deformation in rubbers through experiments and analysis; in the present paper, Part II, attention is focused on the propagation of one-dimensional tensile shock waves in strips of latex and nitrile rubber. Tensile wave propagation experiments were conducted at high strain rates by holding one end fixed and displacing the other end at a constant velocity. A high-speed video camera was used to monitor the motion and to determine the evolution of strain and particle velocity in rubber strips. Shock waves have been generated under tensile impact in prestretched rubber strips; analysis of the response yields the tensile shock adiabat for rubbers. The propagation of shocks is analyzed by developing an analogy with the theory of detonation; it is shown that the condition for shock propagation can be determined using the Chapman-Jouguet shock condition.  相似文献   

17.
We study planar shock wave structure in a two-temperature model of a fully ionized plasma that includes electron heat conduction and energy exchange between electrons and ions. For steady flow in a reference frame moving with the shock, the model reduces to an autonomous system of ordinary differential equations which can be numerically integrated. A phase space analysis of the differential equations provides an additional insight into the structure of the solutions. For example, below a threshold Mach number, the model produces continuous solutions, while above another threshold Mach number, the solutions contain embedded hydrodynamic shocks. Between the threshold values, the appearance of embedded shocks depends on the electron diffusivity and the electron–ion coupling term. We also find that the ion temperature may achieve a maximum value between the upstream and downstream states and away from the embedded shock. We summarize the methodology for solving for two-temperature shocks and show results for several values of shock strength and plasma parameters in order to quantify the shock structure and explore the range of possible solutions. Such solutions may be used to verify hydrodynamic codes that use similar plasma physics models.  相似文献   

18.
19.
In the present paper, random-choice method (RCM) and second-order GRP difference method, which are high resolution methods used for pure gas flows with shocks, are extended and employed to study the problem of one-dimensional unsteady two-phase flows. The two-phase shock wave and the flow field behind it in a dusty gas shock tube are calculated and the time-dependent change of the fiow parameters for the gas antiparticle phase are obtained. The numerical results indicate that both the two methods can give the relaxation structure of the two-phase shocks with a sharp discontinuous front and that the GRP method has the advantages of less time-consuming and higher accuracy over the RCM method.  相似文献   

20.
The problem of the propagation of strong, intensely radiating shock waves in inert gases is considered. It is shown that the heating of the shock tube walls by the precursor radiation, accompanied by an increase in the temperature of the adjacent gas, leads to the transverse stratification of the medium and to the disturbance of the one-dimensionality of the flow of shock-heated gas behind the wave front. Ionization kinetics calculations which take this into account indicate an acceleration of ionization near the tube walls, which is consistent with experiment. On the basis of the gas heating values obtained it is possible to establish critical values of the gas pressures ahead of the front and the shock wave Mach numbers, transition through which is accompanied by a radical restructuring of the flow with the formation of a configuration.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 124–131, May–June, 1991.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号