首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Da Li 《Molecular physics》2017,115(24):3104-3116
The elastic constants of the Lennard-Jones system and a binary repulsive particle system (in 1:13 composition) obeying the Weeks-Chandler-Andersen (WCA) potential (WCA2-AB13 system) have been computed using the stress fluctuation formalism by equilibrium molecular dynamics simulations. The systems are under finite fixed pressures. The evolution of the elastic moduli as a function of the temperature is characterised. In both systems, the melting transition is signalled by a jump of the shear modulus, in consistence with the behaviour of the specific volume. At zero temperature, while the elasticity is totally affine for the Lennard-Jones face-centered cubic (fcc) crystal, it clearly contains a non-affine part for the AB13 cubic superlattice. The evolution of the non-affine elasticity as a function of the temperature is investigated, and its behaviour is compared to that of a typical glass-former.  相似文献   

2.
Anthracene molecular crystal has been investigated up to a pressure of 10.5 GPa at room temperature using variable shape variable size Monte Carlo simulations in an isothermal–isobaric ensemble. We have reported various structural quantities, such as cell parameters and unit cell volume, as a function of pressure and compared them with the experimental results [J. Chem. Phys. 119, 1078 (2003)]. The pressure dependence of angles θ, δ and χ which describe the relative packing of molecules in the crystal has been calculated. We report that anthracene molecular crystal does not exhibit any first order phase transition up to a pressure of 10.5 GPa which is consistent with the experimental observations by Oehzelt et al. [Phys. Rev. B 66, 174104 (2002)]. The calculated equation of state (EOS) has been fitted to a Murnaghan-type EOS with good agreement. The calculated bulk modulus and the pressure derivative of bulk modulus are 8.2 GPa and 8.9 respectively which are in agreement with the experimentally calculated values.  相似文献   

3.
In this work, a first-principles study on PrAg compound using the density functional theory implemented in the projector-augmented wave (PAW) method in the CsCl (B2) crystal structure has been performed. Based on the optimized structural parameter, which is in good agreement with experimental data, the electronic structure, elastic, thermodynamics and vibrational properties have been investigated. The temperature and pressure variations of volume, bulk modulus, thermal expansion coefficient, heat capacities, and Debye temperatures in wide pressure (0-30 GPa) and temperature ranges have also been predicted.  相似文献   

4.
Molecular dynamic shock wave simulations have been carried out for face centered cubic (f.c.c.) and body centered cubic (b.c.c.) solids using Lennard-Jones and Morse potentials for the interatomic interactions. The Hugoniot conservation relations were accurately obeyed in all of these calculations. The shock wave profiles may vary with the interatomic potential and the crystal structure, effects most clearly shown by the temperature profile near the shock front. The Lennard-Jones solids are intensitive to a change in structure but the Morse solids appear sensitive to crystal structure, at least in comparing b.c.c. with f.c.c. It was shown that the average shock wave temperature can be calculated from a combination of the Hugoniot conservation relations and the Mie-Grüneisen equation of state. The temperature calculated this way is in good agreement with the average shock wave temperature obtained in the computer simulations.  相似文献   

5.
The mechanical properties of nano-single crystal gold and carbon nanotube-embedded gold (CNT/Au) composites under axial tension were investigated using molecular dynamics (MD) simulation method. The interactions between atoms were modeled using the many-body tight-binding (TB) potential and the empirical Tersoff potential coupled with the Lennard-Jones (L-J) potential. We get the yield strain and the yield stress of nano-single crystal gold 0.092, 5.74 GPa, respectively. The computational results show that the increase in Young's modulus of the long CNT-embedded gold composite over pure gold is much large. From the simulation, we also find that the yield stress and the yield strain of short CNT-embedded gold composite are evidently less than that of the nano-single crystal gold.  相似文献   

6.
The structural, elastic and thermodynamic properties of thorium tetraboride (ThB4) have been investigated by using first-principles plane-wave pseudopotential density functional theory with generalized gradient approximation. The behaviors of structural parameters under 0-70 GPa hydrostatic pressure are studied by means of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) geometry optimization scheme. By using the stress-strain method, single crystal elastic constants are calculated to test the mechanical stability of the crystal structure and to determine mechanical properties such as bulk modulus at each pressure. However, in order to study the thermodynamic properties of ThB4, the quasi-harmonic Debye model is used. Then, the dependencies of bulk modulus, heat capacities, thermal expansions, Grüneisen parameters and Debye temperatures on the temperature and pressure are obtained in the whole pressure range 0-70 GPa and temperature range 0-1500 K.  相似文献   

7.
Quantitative behaviors of shock-induced dislocation nucleation are investigated by means of molecular dynamics simulations on fcc Lennard-Jones solids: a model argon. In perfect crystals, it is found that the Hugoniot elastic limit (HEL) is a linearly decreasing function of temperature: from near-zero to melting temperatures. In a defective crystal with a void, dislocations are found to nucleate on the void surface. Also, HEL drastically decreases to 15% of the perfect crystal when the void radius is 3.4 nanometers. The decrease of HEL becomes larger as the void radius increases, but HEL becomes insensitive to temperature.  相似文献   

8.
Radial distribution functions are calculated for binary Lennard-Jones chain mixtures from Monte Carlo simulation. Average and end-to-end inter- and intrachain radial distribution functions are calculated, ten for a binary mixture and four for a pure component. The effects of density, concentration, temperature, chain length, Lennard-Jones size and energy parameters are investigated. It is found that intrachain radial distribution functions are largely independent of density except at very high densities, where they start to take on a structure tending towards that of a crystal lattice. In addition, the effect of using different distribution functions to calculate the associating contribution in statistical associating fluid theory (SAFT) is examined. Further, the effect of using short chain fluids rather than the monomer unit as the reference system in the calculation of the pressure and free energy of chain fluids in first-order thermodynamic perturbation theory (TPT) is examined. It is found that the choice of reference radial distribution function has a marked effect on the calculation of thermodynamic properties through the use of SAFT and TPT.  相似文献   

9.
The structural, phase transition, elastic, lattice dynamic and thermodynamic properties of rare-earth compounds PrP and PrAs with NaCl (B1), CsCl (B2), ZB (B3), WC (Bh) and CuAu (L10) structures are investigated using the first principles calculations within the generalized gradient approximation (GGA). For the total-energy calculation, we have used the projected augmented plane-wave (PAW) implementation of the Vienna Ab-initio Simulation Package (VASP). Specifically, some basic physical parameters, e.g. lattice constants, bulk modulus, elastic constants, shear modulus, Young's modulus and Poison's ratio, are predicted. The obtained equilibrium structure parameters are in excellent agreement with the experimental and theoretical data. The temperature and pressure variations of the volume, bulk modulus, thermal expansion coefficient, heat capacity and Debye temperature are calculated in wide pressure and temperature ranges. The phonon dispersion curves and corresponding one-phonon density of states (DOS) for both compounds are also computed in the NaCl (B1) structure.  相似文献   

10.
高压下单晶LiF的光学及热力学性质的密度泛函理论研究   总被引:2,自引:2,他引:0  
采用平面波赝势密度泛函方法,对单晶氟化锂(LiF)在0~500 GPa静水压下的光学性质进行了理论研究,并利用Vinet状态方程和准简谐Debye模型得到了其热力学性质.理论计算结果表明单晶氟化锂(LiF)在0~500 GPa静水压范围内具有良好的透明性,吸收波段随压强的增加而出现了蓝移.计算所得晶格常数、体积模量及其对压强的一阶导数与实验值相符合.  相似文献   

11.
High-pressure behaviour of orthorhombic MgSiO3 perovskite crystal is simulated by using the density functional theory and plane-wave pseudopotentials approach up to 120 GPa pressure at zero temperature. The lattice constants and mass density of the MgSiO3 crystal as functions of pressure are computed, and the corresponding bulk modulus and bulk velocity are evaluated. Our theoretical results agree well with the high-pressure experimental data. A thermodynamic method is introduced to correct the temperature effect on the O-K first-principles results of bulk wave velocity, bulk modulus and mass density in lower mantle PIT range. Taking into account the temperature corrections, the corrected mass density, bulk modulus and bulk wave velocity of MgSiO3-perovskite are estimated from the first-principles results to be 2%, 4%, and 1% lower than the preliminary reference Earth model (PREM) profile, respectively, supporting the possibility of a pure perovskite lower mantle model.  相似文献   

12.
吴若熙  刘代俊  于洋  杨涛 《物理学报》2016,65(2):27101-027101
根据密度泛函理论,采用平面波赝势和广义梯度方法,计算了Ca S的晶体结构和电子结构.通过准谐徳拜模型预测了硫化钙的体积变化率、体弹模量、热膨胀系数分别与温度和压强的变化关系,以及热容和温度的变化关系.  相似文献   

13.
密度泛函理论研究高温高压下UO2弹性与热力学性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用第一性原理与准谐德拜模型研究UO2在高温高压条件下的弹性与热力学性能。UO2在高温高压下仍属离子型晶体,并且弹性性能计算表明,四角方向剪切常数在高温与高压下均保持稳定。高温下弹性常数C44没有明显变化,而高压下C44迅速增大。体积模量、剪切模量与杨氏模量均随压强增加而增大;高温条件下,体积模量、剪切模量与杨氏模量也未出现明显的降低,表明UO2在高温度高压下均可保持良好的力学性能。不同压强下,UO2定容热容均随温度迅速增大,并在1000 K 附近趋近于杜隆-佩蒂特极限。德拜温度则随温度降低,随压强升高。在低于室温条件下,热膨胀系数随温度急剧增加;温度继续增加,系数的增加趋势则逐渐变缓。计算结果还表明,UO2的热膨胀系数在相同条件下,远小于其他核材料。  相似文献   

14.
This paper investigates the equilibrium lattice parameters, heat capacity, thermal expansion coefficient, bulk modulus and its pressure derivative of LaNi 5 crystal by using the first-principles plane-wave pseudopotential method in the GGA-PBE generalized gradient approximation as well as the quasi-harmonic Debye model. The dependences of bulk modulus on temperature and on pressure are investigated. For the first time it analyses the relationships between bulk modulus B and temperature T up to 1000 K, the relationship between bulk modulus B and pressure at different temperatures are worked out. The pressure dependences of heat capacity C v and thermal expansion α at various temperatures are also analysed. Finally, the Debye temperatures of LaNi 5 at different pressures are successfully obtained. The calculated results are in excellent agreement with the experimental data.  相似文献   

15.
The pressure-volume relation and the compression effect on the bulk modulus of tetrahedral compounds such as GaP, InP, ZnS, ZnSe, ZnTe and CdTe are investigated from the electronic theory of solids by using our recently presented binding force, which includes mainly covalent interactions in the pseudopotential formalism and partially ionic interactions. The calculated results of the pressure-volume relations involving the pressure-induced phase transition are useful when comparing with the experimental data under high pressure. The calculated bulk modulus of these compounds increases as the crystal volume decreases. Further, the pressure derivative of bulk modulus is not constant and decreases with the reduction of the crystal volume.  相似文献   

16.
王永亮  艾琼  陈向荣  蔡灵仓 《中国物理》2007,16(12):3783-3789
The lattice parameter, bulk modulus and its pressure derivative of the wurtzite-type aluminium nitride (w-AlN) are investigated by using the Cambridge Serial Total Energy Package (CASTEP) program in the framework of Density Functional Theory (DFT). The calculated results are in good agreement with the available experimental data and other theoretical results. Through the quasi-harmonic Debye model, the dependences of the normalized lattice parameters $a/a_{0}$ and $ c/c_{0}$, axial ratio $c/a$, normalized primitive-cell volume $V/V_{0}$, Debye temperature ${\it\Theta} _{\rm D} $ and heat capacity $C_{\rm V}$ on pressure $P $ and temperature $ T$ are obtained. It is found that the interlayer covalent interactions (Al-N bonds) are more (even a little) sensitive to temperature and pressure than intralayer ones (N--N bonds), which gives rise to a little lattice anisotropy in the w-AlN.  相似文献   

17.
Summary The dispersion relations and the shear modulus of the 2D Wigner crystal (WC) in the presence of a strong magnetic field are evaluated using a density functional method which includes the effect of electronic correlations. Comparison is made with previous theoretical results on the magnetophonons and the shear modulus. The effect of correlation on the stability of the crystal is discussed. In honour of Prof. Fausto Fumi on the occasion of his retirement from teaching.  相似文献   

18.
采用基于粒子群优化算法的结构预测程序CALYPSO, 并结合第一性原理的VASP程序, 在175 GPa发现NbSi2的奇异立方高压相. 在此结构中, Nb原子形成金刚石结构, 而Si原子则形成正四面体镶嵌在金刚石结构中. 声子谱计算结果表明该结构是动力学稳定的. 电子结构分析表明, 六角相和立方相NbSi2均为金属, 对金属性贡献较大的是Nb原子, 而且Nb和Si原子之间存在明显的p-d杂化现象, 电荷更多地聚集在Si四面体中. 利用“应力应变”方法, 计算了NbSi2的弹性常数, 分析了其体积模量、剪切模量、杨氏模量和德拜温度等热动力学性质随压力的变化并进行了详细的讨论. 根据剪切模量和体积模量的比值分析了NbSi2两种相结构的脆性和延展性, 发现压力会导致六角相NbSi2的延展性增加, 但对立方相结构的延展性影响较小; 采用经验算法计算了NbSi2两种相结构硬度变化情况, 结合这一比值进行了详细的分析. 弹性各向异性计算结果表明, 随着压力增加, 六角结构的各向异性增强, 而立方结构的各向异性减小.  相似文献   

19.
The free energy of a crystal containing a given void fraction is derived in terms of the truncated interparticle Lennard-Jones potential. The free energy is minimized over the void fraction at constant pressure and temperature. It is shown that for all pressures the optimal void fraction remains less than 1% as the temperature is raised. However, at some temperature it grows suddenly and reaches values of the order of the percolation level for voids in a crystal, ∼0.125. At this point, the crystal transitions to the liquid state takes place. The derived dependence of the transition temperature on the pressure—the melting curve—is in good agreement with experimental data on the melting of solidified inert gases. Zh. éksp. Teor. Fiz. 116, 1375–1385 (October 1999)  相似文献   

20.
This paper predicts the elastic and thermodynamic characteristics of TiB2 crystal through the method of density functional theory within the generalized gradient approximation(GGA).The five independent elastic constants(Cij),the bulk modulus(B0),the dependence of bulk modulus(B0) on temperature T and pressure P and the coefficient of thermal expansion(αL) at various temperatures have been evaluated and discussed.According to calculation,the bulk modulus will increase with increasing pressure while decrease with the increasing temperature.The coefficient of thermal expansion is consistent with the famous Gruneisen’s law when the temperature is not too high.The obtained results agree well with the experimental and other theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号