首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first demonstrated example of 19F–15N long‐range heteronuclear shift correlation spectroscopy at natural abundance is reported. Because of the very large variation in the size of 2J(N,F) vs 3J(N,F) long‐range heteronuclear couplings, the utilization of one of the new accordion‐optimized long‐range heteronuclear shift correlations experiments is essential if all possible correlations are to be observed in a single experiment. A modified IMPEACH‐MBC pulse sequence was used in conjunction with an optimization range from 4 to 50 Hz to demonstrate the technique using a mixture of 2‐ and 3‐fluoropyridine, which had 2J(N,F) and 3J(N,F) long‐range couplings of ?52 and 3.6 Hz, respectively. Because of the size of the 2J(N,F) long‐range coupling constant, a J‐modulation of the long‐range correlation response is observed in the spectrum resulting in a ‘doublet’ in F1 due to amplitude modulation. The size of the ‘doublet’ is shown to be a function of the parameter selection (t1max,Tmax,Tmin and spectral width in F1). This behavior is similar to F1 ‘skew’ associated with long‐range correlation responses in ACCORD‐HMBC spectra which has been analyzed in detail previously. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
ADEQUATE experiments provide an alternative to the more commonly employed GHMBC experiment for the establishment of long‐range heteronuclear connectivities. The 1,1‐ADEQUATE experiment allows the unequivocal identification of both protonated and non‐protonated carbon resonances adjacent to a protonated carbon. The 1,n‐ADEQUATE experiment establishes correlations via an initial 1JCH heteronuclear transfer followed by an nJCC out‐and‐back transfer, most typically, via three carbon–carbon bonds. Hence, the 1,n‐ADEQUATE experiment allows the equivalent of 4JCH heteronuclear correlations to be probed when they are not observed in a GHMBC spectrum. Aside from the lower sensitivity of the 1,n‐ADEQUATE experiment relative to GHMBC experiments, the interpretation of the former is also complicated by the ‘leakage’ of 1JCC correlations into the spectrum that must be identified. A method for the inversion of 1JCC correlations to facilitate the interpretation of 1,n‐ADEQUATE spectra is presented that allows a single experiment to be performed to access 1JCC and nJCC correlation information. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Unsymmetrical and generalized indirect covariance processing methods provide a means of mathematically combining pairs of 2D NMR spectra that share a common frequency domain to facilitate the extraction of correlation information. Previous reports have focused on the combination of HSQC spectra with 1,1‐, 1,n‐, and inverted 1JCC 1,n‐ADEQUATE spectra to afford carbon–carbon correlation spectra that allow the extraction of direct (1JCC), long‐range (nJCC, where n ≥ 2), and 1JCC‐edited long‐range correlation data, respectively. Covariance processing of HMBC and 1,1‐ADEQUATE spectra has also recently been reported, allowing convenient, high‐sensitivity access to nJCC correlation data equivalent to the much lower sensitivity n,1‐ADEQUATE experiment. Furthermore, HMBC‐1,1‐ADEQUATE correlations are observed in the F1 frequency domain at the intrinsic chemical shift of the 13C resonance in question rather than at the double‐quantum frequency of the pair of correlated carbons, as visualized by the n,1, and m,n‐ADEQUATE experiments, greatly simplifying data interpretation. In an extension of previous work, the covariance processing of HMBC and 1,n‐ADEQUATE spectra is now reported. The resulting HMBC‐1,n‐ADEQUATE spectrum affords long‐range carbon–carbon correlation data equivalent to the very low sensitivity m,n‐ADEQUATE experiment. In addition to the significantly higher sensitivity of the covariance calculated spectrum, correlations in the HMBC‐1,n‐ADEQUATE spectrum are again detected at the intrinsic 13C chemical shifts of the correlated carbons rather than at the double‐quantum frequency of the pair of correlated carbons. HMBC‐1,n‐ADEQUATE spectra can provide correlations ranging from diagonal (0JCC or diagonal correlations) to 4JCC under normal circumstances to as much as 6JCC in rare instances. The experiment affords the potential means of establishing the structures of severely proton‐deficient molecules. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Posaconazole is a structurally complex triazole antifungal agent that, by virtue of its structural complexity, provides a good test molecule for the evaluation of NMR structure elucidation methodologies. Although GHMBC and related long‐range 1H–13C heteronuclear shift correlation techniques are extremely powerful, at the same time, when dealing with unknowns, they can be problematic in that there is no way to readily differentiate adjacent (2 JCH) correlations from longer range correlations, e.g., 3JCH and nJCH, n > 3. The 1,1‐ADEQUATE experiment, in contrast, provides unequivocal experimental access to adjacent carbon–carbon correlation information, albeit with a sensitivity penalty, as the experiment involves an adjacent 13C–13C out‐and‐back magnetization transfer. In part, the sensitivity penalty can be overcome by using unsymmetrical indirect covariance or general indirect covariance processing methods. The application of these methods through the coprocessing of multiplicity‐edited GHSQC and 1,1‐ADEQUATE data to generate an HSQC‐ADEQUATE correlation plot is demonstrated for posaconazole.  相似文献   

5.
A useful pulse sequence for measuring long‐range C? H coupling constants (JC? H) named high resolution‐HMBC (HR‐HMBC) has been developed. In this pulse sequence, the J‐scaling pulse [(nt1)/2? 180° (H/C) ? (nt1)/2] is incorporated after the spin evolution period, and then followed by an 1H 180° pulse to reverse the magnetization of JC? H couplings. As a result, splittings of the cross peaks due to the long‐range JC? H are realigned with separations of nJC? H along the F1 dimension, and thus even the small long‐range JC? H values can easily be determined. The efficiency of measuring the long‐range JC? H using the proposed pulse sequences has been demonstrated in application to the complicated natural product, portmicin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A modified pulse field gradient (PFG)‐enhanced inverse (1H)‐detected 2D heteronuclear Overhauser effect spectroscopy (HOESY) pulse sequence is demonstrated for the acquisition of 1H–7Li heteronuclear correlations. In practice, t1 noise artifacts were observed using the original PFG‐enhanced inverse‐detected HOESY pulse sequence, which degraded the ability to detect accurately weak heteronuclear Overhauser signals. Experimentally it is shown that a simple modification of the PFG‐enhanced inverse‐detected HOESY pulse sequence greatly reduces the t1 noise that may result from variations in magnetic susceptibility, and allows improved detection of weak 1H–7Li correlations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
1,1‐ADEQUATE and the related long‐range 1,n‐ and n,1‐ADEQUATE variants were developed to provide an unequivocal means of establishing 2JCH and the equivalent of nJCH correlations where n = 3,4. Whereas the 1,1‐ and 1,n‐ADEQUATE experiments have two simultaneous evolution periods that refocus the chemical shift and afford net single quantum evolution for the carbon spins, the n,1‐variant has a single evolution period that leaves the carbon spin to be observed at the double quantum frequency. The n,1‐ADEQUATE experiment begins with an HMBC‐type nJCH magnetization transfer, which leads to inherently lower sensitivity than the 1,1‐ and 1,n‐ADEQUATE experiments that begin with a 1JCH transfer. These attributes, in tandem, serve to render the n,1‐ADEQUATE experiment less generally applicable and more difficult to interpret than the 1,n‐ADEQUATE experiment, which can in principle afford the same structural information. Unsymmetrical and generalized indirect covariance processing methods can complement and enhance the structural information encoded in combinations of experiments e.g. HSQC‐1,1‐ or ?1,n‐ADEQUATE. Another benefit is that covariance processing methods offer the possibility of mathematically combining a higher sensitivity 2D NMR spectrum with for example 1,1‐ or 1,n‐ADEQUATE to improve access to the information content of lower sensitivity congeners. The covariance spectrum also provides a significant enhancement in the F1 digital resolution. The combination of HMBC and 1,1‐ADEQUATE spectra is shown here using strychnine as a model compound to derive structural information inherent to an n,1‐ADEQUATE spectrum with higher sensitivity and in a more convenient to interpret single quantum presentation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Despite the tremendous usage of HMBC to establish long‐range 1H–13C and 1H–15N heteronuclear correlations, an inherent drawback of the experiment is the indeterminate nature of the nJXH correlations afforded by the experiment. A priori there is no reliable way of determining whether a given nJCH correlation is, for example, via two‐, three‐, or sometimes even four‐bonds. This limitation of the HMBC experiment spurred the development of the ADEQUATE family of NMR experiments that rely on, in the case of 1,1‐ADEQUATE, an out‐and‐back transfer of magnetization via the 1JCC homonuclear coupling constant, which is significantly larger than nJCC (where n = 2–4) couplings in most cases. Hence, the 1,1‐ADEQUATE experiment has generally been assumed to unequivocally provide the equivalent of 2JCH correlations. The recent development of the 1,1‐ and 1,n‐HD‐ADEQUATE experiments that can provide homodecoupling for certain 1JCC and nJCC correlations has increased the sensitivity of the ADEQUATE experiments significantly and can allow acquisition of these data in a fraction of the time required for the original iterations of this pulse sequence. With these gains in sensitivity, however, there occasionally come unanticipated consequences. We have observed that the collapse of proton multiplets, in addition to providing better s/n for the desired 1JCC correlations can facilitate the observation of typically weaker 2JCC correlations across intervening carbonyl resonances in 1,1‐HD‐ADEQUATE spectra. Several examples are shown, with the results supported by the measurement of the 2JCC coupling constants in question using J‐modulated‐HD‐ADEQUATE and DFT calculations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
An unsymmetrical heterocyclic diamine, 1,2‐dihydro‐2‐(4‐aminophenyl)‐4‐[4‐(4‐aminophenoxy)‐4‐phenyl]‐(2H)phthalazin‐1‐one, was synthesized. Its 1H and 13C NMR spectra were completely assigned by utilizing the two‐dimensional heteronuclear 13C–1H multiple‐bond coherence (HMBC) spectroscopy, and heteronuclear 13C–1H one‐bond correlation spectroscopy, homonuclear shift correlation spectroscopy (H,H‐COSY) and rotating frame Overhauser enhancement spectroscopy (ROESY). The structure of the compound was shown to be the phthalazinone rather than the phthalazine ether from cross peaks and chemical shifts of the protons. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Octadecyl p‐coumarates undergo E–Z isomerization in daylight. Although 1H NMR, 13C NMR and 1H–1H COSY gave indications about this isomerization, the overlapping of some signals in the 1H NMR of aromatic region prevented the delineation of signals of the individual isomers. However, heteronuclear spin quantum coupling correlation (HSQC) with the unique feature of two sets of nearby δCδH correlations gave conclusive evidence for this isomerization and helped in the delineation of 1H NMR and 13C NMR signals of E‐octadecyl p‐coumarate and Z‐octadecyl p‐coumarate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A spin state‐selective Heteronuclear Single‐Quantum Multiple‐Bond Connectivities (HSQMBC‐COSY) experiment is proposed to measure the sign and the magnitude of long‐range proton‐carbon coupling constants (nJ(CH); n > 1) either for protonated or for non‐protonated carbons in small molecules. The simple substitution of the selective 180° 1H pulse in the original selHSQMBC pulse scheme by a hard one allows the simultaneous evolution of both proton‐proton and proton‐carbon coupling constants during the refocusing period and enables a final COSY transfer between coupled protons. The successful implementation of the IPAP principle leads to separate mixed‐phase α/β cross‐peaks from which nJ(CH) values can be easily measured by analyzing their relative frequency displacements in the detected dimension. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Improved pulse sequences for measuring long‐range C‐H coupling constants (nJC‐H), named selective COSY‐J‐resolved HMBC‐1 and ?2, have been developed. In the spin systems, such as ‐CHC‐CHA(CH3)‐CHB‐, a methine proton HA splits into a multiplet owing to several vicinal couplings with protons, resulting in attenuation of its cross‐peak intensity. Therefore, the measurements of nJC‐H with HA are generally difficult in the J‐resolved HMBC or selective J‐resolved HMBC spectrum. With the aim of accurate measurements of nJC‐H in such a spin system, we have developed new pulse sequences, which transfer the magnetization of a methyl group to its adjacent methine proton. The proposed pulse sequences successfully enable to enhance the sensitivity of HA cross peak in comparison with the selective J‐resolved HMBC pulse sequence. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
To further extend temperature range of application and low temperature performance of the ethylene‐styrene copolymers, a series of poly(ethylene‐styrene‐propylene) samples with varying monomer compositions and relatively low glass‐transition temperatures (Tg = −28 – 22 °C) were synthesized by Me2Si(Me4Cp)(N‐t‐Bu)TiCl2/MMAO system. Since the 13C NMR spectra of the terpolymers were complex and some new resonances were present, 2D‐1H/13C heteronuclear single quantum coherence and heteronuclear multiple bond correlation experiments were conducted. A complete 13C NMR characterization of these terpolymers was performed qualitatively and quantitatively, including chemical shifts, triad sequence distributions, and monomer average sequence lengths. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 340–350  相似文献   

14.
The long-range heteronuclear single quantum multiple bond correlation (LR-HSQMBC) experiment is the experiment of choice for visualizing heteronuclear long-range coupling interactions nJCH across 4–6-bonds and is experimentally superior to the decoupled heteronuclear multiple-bond correlation (D-HMBC) experiment. Yet, the exact reasons have not been fully understood and established. On the basis of our recent investigation of the nonrefocused variants LR-HSQC and HMBC, we have extended a JHH′-dedicated investigation to the D-HMBC and LR-HSQMBC experiments. Unlike the nonrefocused variants, the influence of homonuclear couplings JHH′ on the intensity of long-range nJCH cross-peaks is not easily predictable and may be summarized as follows: (a) irrespective of the magnitude and number of JHH′ interactions long-range nJCH cross-peaks are more intense in D-HMBC spectra as long as the evolution delay Δ is not too large, because in contrast to LR-HSQMBC no JHH′-caused intensity zeroes will occur. (b) If JHH′ is small and Δ large, the intensity of cross peaks in D-HMBC spectra may be weakened or may even vanish at Δ = (0.25+0.5k)/JHH′, whereas for the LR-HSQMBC this unwanted effect occurs at Δ = k + 0.5/JHH′. Consequently, when Δ is adjusted to visualize weak nJCH long-range correlations, our findings corroborate that there are potentially more cross-peaks expected to show up in a LR-HSQMBC spectrum compared with a D-HMBC spectrum. This has been indeed noticed experimentally, even though the intensity of a many long-range nJCH cross-peaks may still be higher in the spectra of the D-HMBC experiment correspondingly adjusted for detecting weak nJCH correlations.  相似文献   

15.
The restricted active‐space (RAS) approach can accurately simulate metal L‐edge X‐ray absorption spectra of first‐row transition metal complexes without the use of any fitting parameters. These characteristics provide a unique capability to identify unknown chemical species and to analyze their electronic structure. To find the best balance between cost and accuracy, the sensitivity of the simulated spectra with respect to the method variables has been tested for two models, [FeCl6]3– and [Fe(CN)6]3–. For these systems, the reference calculations give deviations, when compared with experiment, of ≤1 eV in peak positions, ≤30% for the relative intensity of major peaks, and ≤50% for minor peaks. When compared with these deviations, the simulated spectra are sensitive to the number of final states, the inclusion of dynamical correlation, and the ionization potential electron affinity shift, in addition to the selection of the active space. The spectra are less sensitive to the quality of the basis set and even a double‐ζ basis gives reasonable results. The inclusion of dynamical correlation through second‐order perturbation theory can be done efficiently using the state‐specific formalism without correlating the core orbitals. Although these observations are not directly transferable to other systems, they can, together with a cost analysis, aid in the design of RAS models and help to extend the use of this powerful approach to a wider range of transition metal systems. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
During the terminal heat sterilization of the lipid emulsion final dose formulation of the photodynamic therapeutic (PDT) agent tin ethyl etiopurpurin (SnET2), a new degradant was observed at very low levels. The degradant, which was prone to photo‐instability, was isolated by preparative chromatography and subsequently characterized by mass spectrometry and NMR methods. Reproducible parent ion clusters were only observable via negative ion APCI methods. Because of the limited isolate sample, NMR characterization was done using 1.7 mm SMIDG (SubMicro Inverse‐Detection Gradient) NMR probe technology in conjunction with the accordion‐optimized IMPEACH‐MBC long‐range heteronuclear shift correlation experiment. The “static” 8 Hz optimization of the GHMBC experiment failed to allow the observation of a number of long‐range correlations that were of critical importance to the determination of the structure of the impurity. In contrast, all of the correlations required to assemble the structure were obtained from an IMPEACH‐MBC experiment optimized for long‐range heteronuclear couplings in the range from 2–10 Hz.  相似文献   

17.
An efficient pulse sequence for measuring long‐range C? H coupling constants (JC? H) named selective J‐resolved HMBC has been developed by replacing a 1H 180° pulse with a selective 1H 180° pulse and the HMBC pulse scheme with the constant time (CT) HMBC employed in the J‐resolved HMBC pulse sequence that we reported previously. The novel pulse sequence providing only long‐range JC? H cross peaks for easy and accurate analysis enables to overcome disadvantages of the previous HMBC‐based pulse sequences (J‐resolved HMBC‐1) along with maintaining high sensitivity. The efficiency of measuring long‐range JC? H using the proposed pulse sequence has been demonstrated in applications to the complicated natural products, portmicin and monazomycin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
1,1‐ADEQUATE is a powerful and robust NMR experiment to establish carbon–carbon connectivities using modest sample quantities when cryogenic probe technology is available. Yet potential pitfalls of applying this method are not widely appreciated, such as weak or missing 1JCC correlations in strongly coupled 13C‐13C AB spin systems and unusually large multi‐bond (nJCC) correlations associated with particular functional groups. These large nJCC correlations observed in 1,1‐ADEQUATE spectra could be mistaken for 1JCC correlations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The conformation of [bis‐(N,N′‐difluoroboryl)]‐3,3′‐diethyl‐4,4′,8,8′,9,9′,10,10′‐octamethyl‐2,2′‐bidipyrrin (1) in solution was studied by analyzing the 13C? 19F and 19F? 19F through‐space spin–spin couplings. The 1H and 13C NMR spectra were assigned on the basis of nuclear Overhauser effect spectroscopy (NOESY), heteronuclear single‐quantum correlation (HSQC), and heteronuclear multiple‐bond correlation (HMBC) experiments. The 19F spectrum of 1 was compared with that of 2‐ethyl‐1,3,5,6,7‐pentamethyl‐4,4‐difluoro‐4‐bor‐3a,4a‐diaza‐s‐indacen (2). The 19F? 19F through‐space spin? spin coupling in 1 was thus assigned and the coupling constant was obtained by simulating the coupling patterns. The obtained conformation of 1 was compared with those of the known complexes [bis‐(N,N′‐difluoroboryl)]‐3,3′,8,8′,9,9′‐hexaethyl‐4,4′,10,10′‐tetramethyl‐6,6′‐(4‐methylphenyl)‐2,2′‐bidipyrrin (3)and [bis‐(N,N′‐difluoroboryl)]‐9,9′‐diethyl‐4,4′,8,8′,10,10′‐hexamethyl‐3,3′‐bis(methoxycarbonylethyl)‐2,2′‐bidipyrrin (4). The conformational dynamics of 1, 3, and 4 was surveyed by observing the temperature dependence of the through‐space coupling constants between 253 and 333 K. The 13C? 19F and 19F? 19F through‐space spin–spin couplings thus confirm similar conformations of different BisBODIPYs in solution in contrast to earlier findings in the solid state. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Single‐scan 2D NMR relies on a spatial axis for encoding the indirect‐domain internal spin interactions. Various strategies have been demonstrated for fulfilling the needs underlying this procedure. All such schemes use gradient‐echoed sequences that leave at their conclusion solely the effects of the internal interactions along the indirect domain; they also include a real‐time scheme that though simple, yields in general mixed‐phase line shapes. The present paper introduces two new proposals geared up for easing the spatial encoding underlying single‐scan 2D NMR methodologies. One of these is capable of delivering dispersive‐free peaks along the indirect domain, and thereby purely‐absorptive 2D line shapes, in amplitude‐encoded experiments. The other demonstrates for the first time, the possibility to obtain single‐scan 2D spectra without echoing the effects of the encoding gradient–simply by applying a single‐pulse frequency sweep to encode the interactions. Both of these modes are compatible with homo‐ and heteronuclear correlations, and exhibit a number of complementary features vis‐à‐vis encoding alternatives that have so far been presented. The overall principles underlying these new spatially encoding protocols are derived, and their performance demonstrated with single‐scan 2D NMR TOCSY and HSQC experiments on model compounds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号