首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
赵剑强  赵倩  陈莹  杨文娟  胡博  刘珺  吴沛 《应用声学》2018,37(4):582-586
基于理论推导和计算,给出了公路声屏障声学设计中,在考虑地面附加衰减情况下计算插入损失的方法。该方法综合考虑了有限长线声源无限长声屏障绕射声衰减量、有限长线声源地面衰减量及遮蔽角对插入损失的影响。通过与《声屏障声学设计和测量规范》(HJ/T90-2004)的计算结果的对比,验证了本文所给方法的精确性及可行性,并对规范所给地面衰减修正量进行了商榷。最后,给出了当预测点位于有限长路段中央法线上时,通过计算线声源地面衰减量得到计算插入损失所需参数值,再计算插入损失的简便方法。本研究为存在地面附加衰减情况下有限长声屏障插入损失计算提供了一个新的参考方法。  相似文献   

2.
Salomons建立的抛物方程(CNPE)方法可以预测非均匀环境中的声屏障插入损失。但是该方法在声屏障与声源距离较近时会产生较大误差。文中通过理论分析发现产生该问题的原因在于CNPE方法所使用的Gauss初始场仅适用于小仰角(10°以内)范围内的声波。为解决Gauss初始场引起的问题,推导了可以用于较大仰角声波的更高阶数的Gauss初始场。通过数值仿真对比了不同阶数的初始场在CNPE方法中的效果。结果表明:4阶初始场是最适合CNPE方法的初始场,将该初始场与CNPE方法相结合,可以准确预测当声屏障与声源距离较近时的插入损失.   相似文献   

3.
针对板-腔耦合系统的声辐射模态(ARM)计算问题,提出了一种基于能量原理的声辐射模态计算方法,该方法从能量原理的动力学方程构建起声压模态幅值和结构模态幅值的关系,通过将声势能表示为结构模态幅值向量的二次型形式,得到板-腔耦合系统的声辐射模态,弥补了前人理论在解决声腔为阻抗壁面和结构-声为强耦合条件时的不足。通过数值算例验证了本文计算方法的正确性和有效性,在此基础上分析了壁面和结构-声耦合条件变化对声辐射模态特性的影响。结果表明:声辐射模态辐射效率曲线会在声腔模态频率处产生峰值,阻抗壁面的引入会降低声辐射模态辐射效率在峰值处的幅值,并且阻抗值越小,幅值衰减效应越明显,具体表现为声势能曲线在辐射效率峰值频率处幅值会下降;强耦合条件下低频段声势能响应主要由弹性板结构模态激发,响应峰值密度更高,幅值更低。低频同频宽的声辐射模态辐射效率峰值数更少,峰值频率更高。  相似文献   

4.
李沁然  孙超  谢磊 《物理学报》2022,(2):142-154
内孤立波是一种常见于浅海海域的非线性内波,具有振幅大、周期短和流速强等特点,它通过扰动水体中的温盐分布使声速剖面产生明显的距离依赖性,进而影响水下声传播特性.内波自生成后通常以1 m/s量级的速度传播,运动的内波使声传播路径上的声波模态能量在空间和时间上剧烈起伏.本文定义模态强度为模态系数模值(模态幅度)的平方,并用其衡量各阶模态所含声能量的大小.文中基于耦合简正波理论,推导了内波运动时声波模态强度起伏的表达式,将模态强度表征为振荡项和趋势项的线性叠加.以往的工作大多局限于单独从时域或频域研究内波运动时声波模态强度的时变规律,本文则结合短时傅里叶变换在时频平面上揭示了模态强度的起伏机理.理论推导和数值仿真均表明内孤立波使各阶声波模态之间发生能量交换,即模态耦合.内波的动态传播进一步引起模态干涉,这种干涉效应表现为模态强度中的振荡项并使模态强度随时间快速起伏.受模态剥离效应(不同阶模态之间衰减系数的差异)的影响,趋势项的幅度随时间不断变化,进而对模态干涉引起的振荡叠加了时变的偏置.模态强度的整体走势和振荡项中各频率分量振幅的时变特征均与模态衰减密切相关.同时,本文使用深度积分声强作为总接...  相似文献   

5.
二维正方晶格多点缺陷声子晶体实验研究   总被引:5,自引:0,他引:5       下载免费PDF全文
赵寰宇  何存富  吴斌  汪越胜 《物理学报》2013,62(13):134301-134301
基于超声浸水透射技术, 实验研究了有限尺寸二维正方晶格钢/水声子晶体多点缺陷模态性质. 利用COMSOL Multiphysics软件建立该声子晶体有限元计算方法, 求解了9×9超胞多点缺陷声子晶体能带结构, 把缺陷局域模态频率与数值仿真和实验结果进行对比, 结果表明: 实验数据和理论值能够很好符合. 进一步分析发现, 点缺陷数量影响声波局域效应、本征模态和传播特性, 为设计有限尺寸声波器件提供理论依据. 关键词: 声子晶体 多点缺陷 实验研究 有限元  相似文献   

6.
深海海底斜坡环境下的声传播   总被引:1,自引:0,他引:1       下载免费PDF全文
胡治国  李整林  张仁和  任云  秦继兴  何利 《物理学报》2016,65(1):14303-014303
海底地形变化对声传播具有很大影响,在南海深海区域海底斜坡环境下进行了一次声传播实验,实验显示倾斜海底环境下声传播损失出现了一些不同于平坦海底环境下的现象,分析并解释了海底地形变化对产生声传播差异的原因.结果表明,海底斜坡对声波的反射增强作用可使斜坡上方的声传播损失减少约5 d B.当声波第一次入射到达的海底位置有较小幅度的山丘(凸起高度小于1/10海深)时,海底小山丘即可对声波有反射遮挡作用,导致在其反射区特定传播距离和深度上出现倒三角声影区,比平坦海底环境下相同影区位置处的传播损失增大约8 d B,影响深度可达海面以下1500 m.而海底斜坡对声波的反射阻挡作用使得从海面反射及水体向下折射的会聚区结构消失,只剩下从水体向上折射的会聚结构.因此,海底地形对深海声传播影响较大,在水下目标探测和性能评估等应用中应予以重视.  相似文献   

7.
本文对声波在空腔非局域反应声衬管道内的传播进行了研究。特征方程通过声衬内和管道内两部分声场的耦合求解得到,并采用积分方法对特征方程积分求解,通过模态匹配的方法建立并求解了有限长管道非局域反应声衬的声辐射数值模型,展示了在管道消声主动控制方面的应用潜力。  相似文献   

8.
本文以惠更斯-菲涅耳衍射原理为基础,运用菲涅耳半波带叠加的概念,给出了在一半无限大薄屏后球面波的衍射声场中接收点的声压幅值的近似表达式,并推广至声屏障为一尖劈或一个三边厚障板的情况,得到了屏障声插入损失的一种新的计算方法,称为菲涅耳半波带法。理论计算值与实验结果符合较好,表明该方法可应用于噪声控制工程中。  相似文献   

9.
有源声屏障中误差传感器的位置优化   总被引:3,自引:2,他引:1  
有源声屏障利用有源控制系统提高声屏障低频段的降噪效果。有源控制系统中误差传感器的位置对整个系统的降噪效果有较大的影响。通过数值模拟和实验研究误差传感器的位置优化问题,得出了有源控制系统中误差传感器摆放位置的两条结论:(1)所介绍的三种摆放中,误差传感器的位置在次级声源的正上方时,有源控制系统在屏障后方声影区引入的新增插入损失最好,特别是对于距离屏障较远的区域;(2)当误差传感器的位置在次级声源的正上方时,误差传感器与次级声源间的距离存在一个最优距离使得屏障后方声影区的衍射声得到最好的降低。  相似文献   

10.
热声发动机板叠两端存在较大的温度梯度,导致沿板叠轴向的热渗透深度出现严重的不均一性,影响到热声转换效应的发挥。本文提出了板叠结构形式与温度梯度相一致的结构设计理念,并构建了非平行板叠结构的驻波型热声发动机数理模型。针对不同板叠锥角热声发动机的热力性能展开了深入研究和对比分析,得出板叠锥角对热声发动机频率、压比、压力振幅和体积流率等热力参数的影响关系。结果表明:与平行板叠结构相比,当选取合适锥角时,渐缩和渐扩式板叠结构均可提高热声系统的性能,在1°和-2.81°时系统的最大声功流分别提高了103.9%和88.8%。研究结果为进一步改善热声热机性能提供理论支撑。  相似文献   

11.
A previous paper [Applied Acoustics 66 (2005) 709-730] has shown that adding a quadratic residue diffuser (QRD) to the top of a T-shape barrier can provide better barrier performance than an equivalent purely absorptive barrier. In here, we extend the study to look at the performance when a QRD is made absorptive. This paper presents an investigation on the acoustic performance of a few welled-diffusers with different absorption ability on top of a T-shape noise barrier. The absorption properties of the diffusers are modified with different sequences, by filling the wells with fiberglass, by covering the well entrance with wire meshes, and by putting perforated sheet either on the top surface or inside the wells. A 2D Boundary Element Method (BEM) is used to calculate the barrier insertion loss. The numerical and experimental results on diffuser barriers with rigid and absorptive covers are compared. Among the tested models the best method of treating diffuser barriers with absorbent agents in the QRD is found to be a perorated sheet on top or inside the diffuser wells. It is found that increasing the absorption ability of QRD by fiberglass or high resistance wire meshes has negative effect on the efficiency of a QRD barrier. It is shown that, if the increase in absorption destroys the effect of resonance in wells, it will also have negative effect on the insertion loss performance of the QRD edge barrier.  相似文献   

12.
The acoustical insertion losses produced by a balcony-like structure in front of a window are examined experimentally. The results suggest that the balcony ceiling is the most appropriate location for the installation of artificial sound absorption for the purpose of improving the broadband insertion loss, while the side walls are found to be the second best. Results also indicate that the acoustic modes of the balcony opening and the balcony cavity resonance in a direction normal to the window could have a great impact on the one-third octave band insertion losses. The maximum broadband road traffic noise insertion loss achieved is about 7 dB.  相似文献   

13.
The paper describes an investigation about the acoustic performance of noise barriers with quadratic residue diffuser (QRD) tops, and with T-, Arrow-, Cylindrical and Y-shape profiles. A 2D boundary element method (BEM) is used to calculate the barrier insertion loss. The results of rigid and with absorptive coverage are also calculated for comparisons. Using QRD on the top surface of almost all barrier models presented here is found to improve the efficiency of barriers compare with using absorptive coverage at the examined receiver positions. T-shape and Arrow-shape barriers are also found to provide better performance than other shapes of barriers. The best shape of barriers for utilising QRD among the tested models is the T-shape profile barrier. It is found that reducing the design frequency of QRD shifts the performance improvement towards lower frequency, and therefore the most efficient model for traffic noise is a barrier covered with a QRD tuned to around 400 Hz.  相似文献   

14.
The performances of barriers having different shapes and surface conditions were tested using the boundary element method in a well-controlled environment. The heights and widths of the barriers were standardized and the insertion losses for six receiver positions were averaged and compared. Figures displaying the results allow for straightforward barrier performance estimation. It was shown that absorbing and soft edges significantly improve the efficiency of the barrier, but configuration modifications provide only a slight improvement. The soft T-shaped barrier produces the highest performance. A 3 m high T-shaped barrier provides the same performance as a 10 m high plain barrier. The spectral efficiency was also investigated. The insertion loss spectra for the absorbing and the soft barriers exhibit a similar shape, but the rigid barrier differs from these two.  相似文献   

15.
Although a considerable amount of research has been undertaken regarding the performance of T-profile noise barriers, the information available to the practicing highway engineer is confusing. For example, there is a widespread belief that the performance of a top edge, expressed as an insertion loss relative to that of the simple barrier on which it is mounted, is constant, irrespective of the relative locations of the source, barrier and receiver. In order to clarify the situation an investigation has been undertaken, using computer modelling, of the performance afforded by highway noise barriers with T-profile tops with different acoustic treatments. The relative insertion loss was found to increase systematically with increasing top width. Although the relative insertion loss afforded by a reflective T-top is small, significant attenuation can be obtained with an absorptive top. Examination of the effect on performance of the locations of source and receiver relative to that of the noise barrier indicated that, for source and receiver locations typical of those experienced for highway noise barriers, the relative insertion loss for a given width of T-top was a function of (a) the path difference between sound travelling to the receiver via the barrier top and direct sound from the source to the receiver and (b) the barrier height. Plots of relative insertion loss versus the path difference, normalised with respect to barrier heights, for a range of T-top widths and absorbent treatment, resulted in a collapse of data around well defined trend lines which offer the potential of being developed into a prediction method.  相似文献   

16.
The scope of this paper is to study the performance of noise barriers treated with different diffusers with/without a perforated sheet. We investigated the barrier insertion loss using a 2D boundary element method (BEM). To obtain a better depth sequence, a Random Sequence Diffuser (RSD) was designed. The results clearly showed that employing a "RSD" instead of the most popular Schroeder diffusers (Quadratic Residue Diffuser and Primitive Root Diffuser) increased the acoustic performance. We also found that the diffuser performance improved by treating the diffuser with perforated sheets either on the top surface or inside the wells. The addition of these perforated sheets inside the "RSD" (barrier model "RPI2") improved the performance by 3.59 dB (A).  相似文献   

17.
Measured insertion losses due to the ground effects associated with low configurations of loosely stacked household bricks on a car park are reported. A particularly successful design has the form of a two brick high square lattice which is found to offer a similar insertion loss to regularly-spaced parallel wall arrays of the same height but twice the total width. Part of the insertion loss due to the roughness configurations is the result of transfer of incident sound energy to surface waves which can be reduced by introducing wall absorption or material absorption in the form, for example, of shallow gravel layer. Predicted finite length effects have been explored using a Pseudo-Spectral Time Domain Method, which models the complete 3D roughness profile. It is concluded from measurements and predictions that the lattice design has less dependence on azimuthal source-receiver angle than parallel wall configurations. These predictions are supported by measurements of level difference spectra as a function of azimuthal angle. A 2D Boundary Element Method gives predictions that agree well with data for parallel wall arrays up to 16 m long and it is used to investigate the potential insertion loss of longer configurations up to 0.3 m high. It has been found possible also to make predictions of the insertion loss due to infinitely long 3D lattices using the 2D BEM with the lattice represented by the surface impedance derived from fitting short range data with a slit-pore impedance model. The insertion losses of recessed configurations are predicted to be approximately 3 dB less than those of embossed configurations of the same size. Outdoor experiments also show that pathways can be made through such roughness configurations without significantly affecting their insertion loss. It is concluded that artificial roughness configurations could achieve substantial noise reduction along surface transport corridors without breaking line of sight between source and receiver, thereby proving useful alternatives to noise barriers.  相似文献   

18.
Y.J. Chu  C.M. Mak  X.J. Qiu 《Applied Acoustics》2008,69(12):1343-1349
Indoor barriers are now widely used for sound insulation. This paper examines the performance of indoor barriers in the low-medium frequency range and analyses the interaction between different natural modes of a room-barrier-room system. Morse proposed a theoretical model to calculate the sound field in a coupled-room, but this model neglects the surface integral of the boundary values of sound pressure. To estimate the performance of a barrier in an indoor environment, an analytical model is proposed that modifies the Green’s function for a non-rigid boundary enclosure and approximates the surface integral by a pre-estimated sound pressure based on Morse’s model. An additional approximation has been made in the proposed model to neglect the coupling area in the calculation of the surface integral. The proposed model used to predict the insertion loss of the barrier is verified by the experimental results using a 1:5 scale model. The predicted results agree well with the measured results at lower frequencies.  相似文献   

19.
Active control is used to improve the performance of noise barrier at low-frequency range and the excess insertion loss due to the active control system is influenced by the positions of the error sensors. The positional optimization for the error sensors in an active soft edge noise barrier was investigated. Both numerical simulations and experiments show that there is an optimum in the distance between the secondary sources and the error sensors, and that the error sensors should be placed above the secondary sources.  相似文献   

20.
Ning Han  Xiaojun Qiu 《Applied Acoustics》2007,68(10):1297-1306
Active noise control systems have been applied to increase the insertion loss of noise barriers where the squared sound pressure or the total acoustic energy density is used as the cost function in previous works. The absolute value of the mean active sound intensity is chosen as the cost function to obtain extra sound insertion loss in the dark area of a hybrid active noise barrier system in this note. The strategy of minimizing the near-field sound intensity at discrete locations along the edge of the passive barrier is shown to be able to provide better far-field noise reduction than that of minimizing the squared sound pressure control. Both numerical simulations and off-line experiments are carried out with a three-channel demonstration system, where the locations of the secondary sources and the error sensors are optimized and comparisons are made between the extra sound pressure attenuation of the sound intensity control and that of the squared sound pressure control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号