首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用周期性密度泛函方法对H2S在氧化石墨烯(GO)上的吸附和分解进行了理论计算, 讨论了H2S和GO上的羟基和环氧基团的反应过程.结果表明,反应过程是通过H2S或-SH上的H转移使得GO的环氧基开环和羟基氢化,当GO相反面存在羟基时有助于环氧基团的开环和羟基氢化反应.H2S在GO上吸附和分解到S原子的反应机理中引入了相应的中间态,计算两次脱氢过程能垒分别为3.2和10.4 kcal/mol,第二个H原子的转移是GO还原过程的速率决定步骤.结果还表明GO上的羟基和环氧基团有助于加强S原子和石墨烯的结合.  相似文献   

2.
This study reports a facial regio‐selective synthesis of 2‐alkyl‐N‐ethanoyl indoles from substituted‐N‐ethanoyl anilines employing palladium (II) chloride, which acts as a cyclization catalyst. The mechanistic trait of palladium‐based cyclization is also explored by employing density functional theory. In a two‐step mechanism, the palladium, which attaches to the ethylene carbons, promotes the proton transfer and cyclization. The gas‐phase barrier height of the first transition state is 37 kcal/mol, indicating the rate‐determining step of this reaction. Incorporating acetonitrile through the solvation model on density solvation model reduces the barrier height to 31 kcal/mol. In the presence of solvent, the electron‐releasing (–CH3) group has a greater influence on the reduction of the barrier height compared with the electron‐withdrawing group (–Cl). These results further confirm that solvent plays an important role on palladium‐catalyzed proton transfer and cyclization. For unveiling structural, spectroscopic, and photophysical properties, experimental and computational studies are also performed. Thermodynamic analysis discloses that these reactions are exothermic. The highest occupied molecular orbital?lowest unoccupied molecular orbital gap (4.9–5.0 eV) confirms that these compounds are more chemically reactive than indole. The calculated UV–Vis spectra by time‐dependent density functional theory exhibit strong peaks at 290, 246, and 232 nm, in good agreement with the experimental results. Moreover, experimental and computed 1H and 13C NMR chemical shifts of the indole derivatives are well correlated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
MnO2-based catalysts have attracted great attention in the field of elemental mercury (Hg0) catalytic oxidation because of their superior catalytic performance and wide temperature window. Quantum chemistry calculations based on density functional theory (DFT) combined with periodic slab models were carried out to investigate the heterogeneous mechanism of Hg0 oxidation by oxygen species (gas-phase O2, chemisorbed oxygen, and lattice oxygen) on MnO2 surface. The results indicate that Hg0 and HgO are chemically adsorbed on MnO2 surface with the adsorption energies of ?69.50 and ?226.48?kJ/mol, respectively. The adsorption of O2 on MnO2 surface belongs to chemisorption. O2 can decompose on MnO2 surface with an energy barrier of 97.46?kJ/mol to produce two atomic adsorbed oxygen. The perpendicular adsorbed O2 and dissociative adsorbed O2 are more favorable for Hg0 catalytic oxidation than lattice oxygen, and perpendicular adsorbed O2 is the most active oxygen for Hg0 oxidation. The reaction pathway of Hg0 oxidation by perpendicular adsorbed O2 includes three reaction steps: Hg0?→?Hg(ads)?→?HgO(ads)?→?HgO. The third step (HgO(ads)?→?HgO) is endothermic by 168.17?kJ/mol with an energy barrier of 179.48?kJ/mol, and it is the rate-limiting step of the whole Hg0 oxidation reaction.  相似文献   

4.
The adsorption energies for physisorption and the most stable chemisorption of CO2 on the neutral charge of perfect anatase [TiO2] (0 0 1) are −9.03 and −24.66 kcal/mol on the spin-unpolarized and −12.98 and −26.19 kcal/mol on the spin-polarized surface. The small activation barriers of 1.67 kcal/mol on the spin-unpolarized surface and of 6.66 kcal/mol on the spin-unpolarized surface were obtained. The adsorption mechanism of CO2 on the oxygen vacancy defect [TiO2 + VO] surface of anatase TiO2 using density functional theory calculations was investigated. The energetically preferred conversion of CO2 to CO was found either on the spin-unpolarized or spin-polarized surfaces of oxygen vacancy defect surface [TiO2 + VO] as photocatalyst.  相似文献   

5.
The catalytic dehydrogenation mechanism of ammonia borane (NH3BH3, AB) by Ni N‐heterocyclic carbene (NHC) complexes has been investigated by density functional theory. Two possible mechanisms of the dehydrogenation of NH3BH3 have been theoretically studied: intramolecular reaction at Ni dicarbene and intermolecular reaction at Ni monocarbene and dicarbene. The facile occurrence of the dehydrogenation of AB was demonstrated by the low activation barriers of the rate‐determining step. It was found that the intramolecular pathway is mostly kinetically favorable with lower activation barrier of 15.51 kcal/mol than the intermolecular pathway. Moreover, for intermolecular dehydrogenation of AB, the activation prefers to take place at monocarbene Ni(NHC) catalyst. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Various levels of calculations are carried out to explore the potential energy surfaces (PES) of singlet and triplet SiC3S, a molecule of potential interest in interstellar chemistry. At the DFT/B3LYP/6-311G(d) level, a total of 57 minimum isomers and 92 interconversion transition states are located. The structures of the most relevant isomers and transition states are further optimized at the QCISD/6-311G(d) level followed by CCSD(T)/6-311?+?G(2df) single-point energy calculations. At the QCISD level, the lowest-lying isomer is the chain-like SiCCCS 3 1 (0.0?kcal/mol) with a great kinetic stability of 54.1?kcal/mol. In addition, ring isomers CC-cCSSi 1 9 (19.8?kcal/mol), S-cCCCSi 1 12 (30.4?kcal/mol), S-cCCSiC 1 18 (9.4?kcal/mol), S-cSiCCC 1 21 (34.4?kcal/mol) and cage-like isomer cage-SiSCCC 1 23 (51.8?kcal/mol) also possess considerable kinetic stability (more than 10.0?kcal/mol). As a result, these six isomers are predicted to be possible candidates for future experimental and astrophysical detection. The bond natures and possible formation pathways in interstellar space of the SiCCCS are discussed. The predicted structure and spectroscopic properties for it are expected to be informative for the identification of SiC3S and even larger SiC n S species either in laboratory or in space.  相似文献   

7.
使用密度泛函理论B3LYP/6-311+ G(2d,2p)研究了过氧硝酸的最低能量结构.采用耦合簇方法CCSD(T)/aug-cc-pVDZ首次分别扫描了过氧硝酸沿氧-氮和氧-氧键的分解势能面.计算结果表明在氧-氮势能面上,当O3—N4键长是2.82 ?时,对应的疏松过渡态的能垒是25.6 kcal/mol;在氧$-$氧键的势能面上,当O2—O3键长是2.35 ?时,对应的疏松过渡态的能垒是37.4 kcal/mol.这表明过氧硝酸更容易分解为HO2和NO2.  相似文献   

8.
In the current work, density functional theory calculations were performed to elucidate the detailed reaction mechanism for N‐heterocyclic carbene (NHC)‐catalyzed oxidative N‐acylation reaction of amides with aldehydes affording imide products. According to the calculated results, the reaction is initiated by the nucleophilic attack of NHC to aldehydes forming zwitterionic intermediate, which can then form Breslow intermediate via proton transfer. The Breslow intermediate can then be oxidized affording the oxidative intermediate, which can then go through 1,2‐addition with the deprotonated N‐sulfonylcarboxamides. Subsequently, elimination of NHC catalyst produces the final imide product. Our results reveal that the proton in N‐sulfonylcarboxamides is probably abstracted by base t‐BuOK or DPQH, and the deprotonation process is barrier‐less. Moreover, for the second step, ie, the formation of Breslow intermediate, direct proton transfer is impossible to occur. On the contrary, the results reveal that t‐BuOH can mediate the proton transfer in this step and significantly lower the energy barrier to 24.1 kcal/mol, which is also the highest energy barrier for the whole reaction. The work provides not only valuable clues for elucidating the detailed reaction mechanism for the invaluable NHC‐catalyzed oxidative reactions but also mechanistic insights for the rational design of novel NHC‐catalyzed oxidative reactions in the future.  相似文献   

9.
Summary Complete Active-Space Self-Consistent-Field (CAS-SCF) calculations for cubic N8 are presented. We studied the N8↔4N2 reaction inD 4h symmetry and found its energy release and activation barrier with three different atomic basis sets. The energy release for this reaction is predicted to be around 526 kcal/mol, while the energy barrier to dissociation is estimated about 159 kcal/mol. These results are in substantial agreement with previousab initio estimates. The authors of this paper have agreed to not receive the proofs for correction.  相似文献   

10.
ABSTRACT

The effects of spin contamination errors on the activation barriers of catalytic NO reduction by TiO2/Ag and ZrO2/Cu core-shell catalyst models were investigated using an approximate spin projection method and an unrestricted density functional theory calculation with the plane-wave basis set. The estimated barrier of the TiO2/Ag system increased (0.03?eV), whereas that of the ZrO2/Cu system decreased (0.04?eV) after the correction of the spin contamination error. This difference in the estimated barriers of the two systems can be attributed to the difference in their surface structures. The error obtained for the TiO2/Ag system was larger than that obtained for the gas phase, i.e. the spin contamination error was induced by the molecule/surface interaction. Moreover, the error correction also changed the rate-determining step of ZrO2/Cu. These results demonstrate the importance of the correction of spin contamination errors for the detailed investigation of catalytic reactions.  相似文献   

11.
The formation of N‐trifluoromethylsulfonyl‐2‐vinylaziridine and N‐trifluoromethylsulfonyl‐3‐pyrroline by the reaction of the singlet and triplet trifluoromethanesulfonylnitrenes with s‐cis‐ and s‐trans‐1,3‐butadienes was studied theoretically at the B3LYP/6‐311++G(d,p) and M06‐2X/6‐311++G(d,p) levels of theory. The singlet trifluoromethanesulfonylnitrene adds to s‐cis‐ and s‐trans‐1,3‐butadiene exothermally in one step to give the product of 1,2‐cycloaddition, N‐trifluoromethylsulfonyl‐2‐vinylaziridine, the energy decreasing by 88.5 and 86.2 kcal/mol at the B3LYP level and by 105.2 and 103.0 kcal/mol at the M06‐2X level, respectively. The formed 2‐vinylaziridine can undergo rotation about the C(2)–Csp2 bond with the barrier not exceeding 3.5 kcal/mol and to rearrange into N‐trifluoromethylsulfonyl‐3‐pyrroline. The triplet trifluoromethanesulfonylnitrene reacts with s‐cis‐ and s‐trans‐1,3‐butadiene in two steps. The first exothermic step is the formation of the triplet diradical adducts. The second step is the spin inversion with the energy raising by 5.8 and 17.8 kcal/mol at the B3LYP level and by 11.0 and 20.8 kcal/mol at the M06‐2X level for the adducts to s‐cis‐ and s‐trans‐1,3‐butadiene, respectively. Recombination of the radical centers occurs selectively to give N‐trifluoromethylsulfonyl‐2‐vinylaziridine that is exothermally rearranged into N‐trifluoromethylsulfonyl‐3‐pyrroline with the energy barrier of 40 kcal/mol at the B3LYP level and of 50 kcal/mol at the M06‐2X level. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
用时间分辨傅立叶变换红外发射光谱(TR-FTIR)和G3MP2//B3LYP/6-311G(d,p)水平的电子结构计算研究了环境化学中重要的二氯代乙烯自由基C2HCl2和O2分子的基元反应通道和机理. 通过0.5 cm-1高分辨的TR-FTIR发射光谱观察到三种振动激发态产物CO2、CO和HCl,由光谱拟合得到CO和HCl的振动态分布,结合电子结构计算的反应势能曲线,提出反应机理和能量上最可能的反  相似文献   

13.
The direct and H-mediated dissociation of CO2 on Ni(2 1 1) were investigated at the level of density functional theory. Although formate (HCOO) formation via CO2 hydrogenation was widely reported for CO2 adsorption on metal surfaces, it is found that on Ni(2 1 1) HCOO dissociation into CHO and O is much difficult, while direct dissociation of adsorbed CO2 into CO and O is more favorable. It is also found that the degree of electron transfer from surface to adsorbed CO2 correlates with the elongation of C-O bond lengths and the reduction of the CO2 dissociation barrier.  相似文献   

14.
Quantum chemical calculations have been performed to explore the mechanism of intramolecular cyclization of 2‐benzyloxyphenyl trimethylsilyl ketone (acylsilane) to give the benzofuran derivatives stereoselectively. This reaction involves a formation of siloxycarbene intermediate and a C–H bond insertion of siloxycarbene. The comparative studies on three possible insertion of siloxycarbene show that the concerted insertion of siloxycarbene into C–H bond (pathway a), which needs overcoming an energy barrier of 45.1 kcal/mol, is the most unlikely pathway, and the stepwise insertion of siloxycarbene without spin multiplicity change (pathway c) is energetically more favorable than the stepwise insertion of siloxycarbene with spin multiplicity change (pathway b). More importantly, this work can provide an insight into the stereoselectivity in this reaction in atomic molecular level. The formation of siloxycarbene is calculated to be endergonic by 22.9 kcal/mol with an energy barrier of 30.2 kcal/mol, being the rate‐determining step of the whole process. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
We have explored the lowest doublet and quartet potential energy surfaces (PES) for the reaction of gallium trimer with H2. This reaction was studied experimentally by Margrave and co-workers in a noble gas matrix. The detailed reaction paths ending up with the low-energy Ga3H2 hydride isomers have been predicted based on the high level ab initio coupled-cluster calculations (CCSD(T)) with large basis set. We have found that the reaction occuring on the lowest doublet PES is described by the activation barrier for H2 cleavage of about 15 kcal/mol, consistent with experiment. In the most stable Ga3H2 hydride structure, whose formation is exothermic by 15 kcal/mol, both H atoms assume three-fold bridged positions. The diterminal planar structure of Ga3H2, proposed experimentally from the observed IR spectra, is found to be only 1 kcal/mol less stable than the dibridged form.  相似文献   

16.
《Applied Surface Science》1987,28(4):439-474
Many of the individual steps which make up the reaction of carbon and water to produce CO and H2 were studied on a nickel foil surface using temperature-programmed reaction spectroscopy (TPRS), Auger electron spectroscopy (AES), and ultraviolet photoelectron spectroscopy (UPS). Surface graphite and carbide, two metastable surface carbon forms, were prepared by dehydrogeneration of C2H2 and served as reactant carbon. UPS of the graphite monolayer in contact with the metal yielded a valence electronic structure that could be interpreted in terms of the bulk band structure of graphite. The fully carbided Ni surface was active for H2O dissociation with an estimated activation energy ≤ 5 kcal/mol. The reaction of graphitic carbon in contact with the nickel surface and adsorbed oxygen occurs directly without isolated prior breaking of carbon-carbon bonds. The estimated activation energy for the direct reaction was 44 kcal/mol. A different catalytic reaction cycle involving carbon-carbon bond breaking followed by oxidation of the carbide is energetically more demanding. The activation energy for direct carbon-carbon bond breaking was estimated to be between 65 and 70 kcal/mol. Following this demanding step, the reaction between carbidic carbon and oxygen proceeded with estimated activation energy of 31 kcal/mol.  相似文献   

17.
Pyrite (FeS2) oxidation during coal combustion is one of the main sources of harmful SO2 emission from coal-fired power plants. Density functional theory (DFT) study was performed to uncover the evolution mechanism of SOx formation during pyrite oxidation. The results show that chemisorption mechanism is responsible for O2, SO2 and SO3 adsorption on FeS2 surface. The presence of formed oxidation layer (Fe2O3) weakens the interaction between O2 molecule and FeS2 surface. The adsorbed O2 molecule easily dissociates into active surface O atom for SOx formation. The dissociation reaction of O2 is activated by 77.38?kJ/mol, and exothermic by 138.46?kJ/mol. Compared to the further oxidation of SO2 into SO3, SO2 prefers to desorb from FeS2 surface. The dominant reaction pathway of SO2 formation from the oxidation of the outermost FeS2 surface layer is a three-step process: surface lattice S oxidation, SO2 desorption and replenishment of S vacancy by activated surface O atom. The elementary reaction of surface lattice S oxidation has an activation energy barrier of 197.96?kJ/mol, and is identified as the rate-limiting step. SO2 formation from the further oxidation of bulk FeS2 layer is controlled by a four-step process: bulk lattice S migration, lattice S oxidation, SO2 desorption and surface O atom deposition. Migration of lattice S from bulk position to the outermost surface shows a high activation energy barrier of 175.83?kJ/mol. The deposition process of surface O atom is a relatively easy step, and is activated by 21.05?kJ/mol.  相似文献   

18.
The substituent effect of electron‐withdrawing groups on electron affinity and gas‐phase basicity has been investigated for substituted propargyl radicals and their corresponding anions. It is shown that when a hydrogen of the α‐CH2 group or acetylenic CH in the propargyl system is substituted by an electron‐withdrawing substituent, electron affinity increases, whereas gas‐phase basicity decreases. The calculated electron affinities are 0.95 eV (CH?C? CH2?), 1.15 eV (CH?C? CHF?), 1.38 eV (CH?C? CHCl?), 1.48 eV (CH?C? CHBr?) for the isomers with terminal CH and 1.66 eV (CF?C? CH2?), 1.70 eV (CCl?C? CH2?), 1.86 eV (CBr?C? CH2?) for the isomers with terminal CX at B3LYP level. The calculated gas‐phase basicities for their anions are 378.4 kcal/mol (CH?C? CH2:?), 371.6 kcal/mol (CH?C? CHF:?), 365.1 kcal/mol (CH?C? CHCl:?), 363.5 kcal/mol (CH?C? CHBr:?) for the isomers with terminal CH and 362.6 kcal/mol (CF?C? CH2:?), 360.4 kcal/mol (CCl?C? CH2:?), 356.3 kcal/mol (CBr?C? CH2:?) for the isomers with terminal CX at B3LYP level. It is concluded that the larger the magnitude of electron‐withdrawing, the greater is the electron affinity of radical and the smaller is the gas‐phase basicity of its anion. This tendency of the electron affinities and gas‐phase bacisities is greater in isomers with the terminal CX than isomers with the terminal CH. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Reaction pathways of CO2 reforming of CH4 on Ni(1 1 1) were investigated by using density functional theory calculation. The computed kinetic parameters agree with the available experimental data, and a new and simplified mechanism was proposed on the basis of computed energy barriers. The first step is CO2 dissociation into surface CO and O (CO2 → CO + O) and CH4 sequentially dissociation into surface CH and H (CH4 → CH3 → CH2 → CH). The second step is CH oxygenation into CHO (CH + O → CHO), which is more favored than its dissociation into C and hydrogen (CH → C + H). The third step is the dissociation of CHO into surface CO and H (CHO → CO + H). Finally, H2 and CO desorb from Ni(1 1 1) and form free H2 and CO. The rate-determining step is the CH4 dissociative adsorption, and the key intermediate is surface adsorbed CHO. Parameters, which might modify the proposed mechanism, have been analyzed. In addition, the formation, deposition and elimination of surface carbon have been discussed accordingly.  相似文献   

20.
Mechanistic insights into Heck and Suzuki‐Miyaura cross coupling reactions with C59M (M = Pd/Ni) catalysts were developed. Density functional theory was used for the analysis of all the intermediates and transition states possible during C‐C cross coupling reactions over the catalysts under study. Oxidative addition, a step common to both Heck and Suzuki‐Miyaura cross coupling reactions, was observed to proceed with smaller activation barriers over C59Pd. Heck coupling of iodobenzene with styrene was observed to proceed via oxidative addition, migratory insertion, and reductive elimination steps. The free energy barriers for oxidative addition, migratory insertion, and reductive elimination steps were 14.8, 11.6, and 4.8 kcal/mol, respectively, over C59Pd, and 17.4, 79.3, and 17.4 kcal/mol, respectively, over C59Ni, indicating oxidative addition and migratory insertion to be the rate‐determining steps over C59Pd and C59Ni, respectively. Similarly for Suzuki‐Miyaura coupling reaction, activation barriers for oxidative addition, transmetalation, and reductive elimination steps were 14.8, 52.4, and 7.9 kcal/mol, respectively, over C59Pd, and 17.4, 64.7, and 60.2 kcal/mol, respectively, over C59Ni, indicating transmetalation step to be the rate‐determining step over both the heterofullerenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号