首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The active catalysts for methane formation from the gas mixture of CO2 + 4H2 with almost 100% methane selectivity were prepared by reduction of the oxide mixture of NiO and ZrO2 prepared by calcination of aqueous ZrO2 sol with Sm(NO3)3 and Ni(NO3)2. The 50 at%Ni-50 at%(Zr-Sm oxide) catalyst consisting of 50 at%Ni-50 at%(Zr + Sm) with Zr/Sm = 5 calcined at 650 or 800 °C showed the highest activity for methanation. The active catalysts were Ni supported on tetragonal ZrO2, and the activity for methanation increased by an increase in inclusion of Sm3+ ions substituting Zr4+ ions in the tetragonal ZrO2 lattice as a result of an increase in calcination temperature. However, the increase in calcination temperature decreased BET surface area, metal dispersion and hydrogen uptake due to grain growth. Thus, the optimum calcination temperature existed.  相似文献   

2.
In a recent paper by Chen and Goodman [M. Chen, D.W. Goodman, Surf. Sci. 600 (2006) L255] the structure of SiO2 films epitaxially grown on Mo(1 1 2) has been revisited. This structure has been the subject of several experimental and theoretical studies but it is still controversial, with some authors claiming that it is formed by isolated [SiO4] units and others in favor of a two-dimensional [Si-O-Si] network. With this Comment we want do underline some aspects of the discussion, in particular related to the theoretical work performed so far on this subject, which in our opinion have not been properly represented in Ref. [M. Chen, D.W. Goodman, Surf. Sci. 600 (2006) L255].  相似文献   

3.
Reaction pathways of CO2 reforming of CH4 on Ni(1 1 1) were investigated by using density functional theory calculation. The computed kinetic parameters agree with the available experimental data, and a new and simplified mechanism was proposed on the basis of computed energy barriers. The first step is CO2 dissociation into surface CO and O (CO2 → CO + O) and CH4 sequentially dissociation into surface CH and H (CH4 → CH3 → CH2 → CH). The second step is CH oxygenation into CHO (CH + O → CHO), which is more favored than its dissociation into C and hydrogen (CH → C + H). The third step is the dissociation of CHO into surface CO and H (CHO → CO + H). Finally, H2 and CO desorb from Ni(1 1 1) and form free H2 and CO. The rate-determining step is the CH4 dissociative adsorption, and the key intermediate is surface adsorbed CHO. Parameters, which might modify the proposed mechanism, have been analyzed. In addition, the formation, deposition and elimination of surface carbon have been discussed accordingly.  相似文献   

4.
We report temperature-dependent Raman studies on single crystals of [N(CH3)4]2ZnCI4 from 300 to 10 K. The observed spectral features suggest that both the N(CH3)4 + and ZnCl2- 4 ions are distorted from their regular tetrahedral structure and occupy sites of Cs symmetry in the lattice at room temperature. From the variation of line width of some selected Raman bands and other spectral changes as a function of temperature, it is inferred that both the ZnCl2- 4 and—CH3 groups have high motional freedom at room temperature and the different phase transitions up to 160 K are triggered by the gradual freezing-in of orientational freedom of these groups, while the N—C4 tetrahedra do not play any significant role in these phase transitions. The monoclinic to orthorhombic superlattice phase transitions at 159 K is triggered by freezing-in of the orientational motions of both the ZnCl2- 4 and N(CH3)+ 4 groups in the lattice.  相似文献   

5.
Wide-line proton NMR studies on polycrystalline tetramethylammonium tetrachlorozincate have been carried out at high hydrostatic pressures up to 15 kbar in the temperature range 77-300 K and at ambient pressure down to 4.2 K. A second-moment transition is observed to occur starting around 161 K, the temperature for the V-VI phase transition. This transition temperature is seen to have a negative pressure coefficient up to 2 kbar, beyond which it changes sign. At 77 K the second moment decreases to 4 kbar and then increases again as a function of pressure. The results are explained in terms of the dynamics of the N(CH3)4 groups.  相似文献   

6.
7.
Density functional theory (DFT) combined with conductor-like solvent model (COSMO) have been performed to study the solvent effects of H2 adsorption on Cu(h k l) surface. The result shows H2 can not be parallel adsorbed on Cu(h k l) surface in gas phase and only vertical adsorbed. At this moment, the binding energies are small and H2 orientation with respect to Cu(h k l) surfaces is not a determining parameter. In liquid paraffin, when H2 adsorbs vertically on Cu(h k l) surface, solvent effects not only influences the adsorptive stability, but also improves the ability of H2 activation; When H2 vertical adsorption on Cu(h k l) surface at 1/4 and 1/2 coverage, H-H bond is broken by solvent effects. However, no stable structures at 3/4 and 1 ML coverage are found, indicating that it is impossible to get H2 parallel adsorption on Cu(h k l) surfaces at 3/4 and 1 ML coverages due to the repulsion between adsorbed H2 molecules.  相似文献   

8.
Residual chlorines, which originate from HAuCl4, enhance the aggregation of gold (Au) nanoparticles and clusters, preventing the generation of highly active supported Au catalysts. However, the detailed mechanism of residual-chlorine-promoted aggregation of Au is unknown. Herein to investigate this mechanism, density functional theory (DFT) calculations of Au and Cl adsorption onto a reduced rutile TiO2 (110) surface were performed using a generalised gradient approximation Perdew, Burke, and Ernzerhof formula (GGA–PBE) functional and plane-wave basis. Although both Au and Cl atoms prefer to mono-absorb onto oxygen defect sites, Cl atoms have a stronger absorption onto a reduced TiO2 (110) surface, abbreviated as rTiO2 (110) in the following, than Au atoms. Additionally, co-adsorption of a Cl atom and a Au atom or Au nanorod onto a rTiO2 surface was investigated; Cl adsorption onto an oxygen defect site weakens the interaction between a Au atom or Au nanorod and rTiO2 (110) surface. The calculation results suggest that the depletion of interaction between Au and rTiO2 surface is due to strong interaction between Cl atoms at oxygen defect sites and neighbouring bridging oxygen (OB) atoms.  相似文献   

9.
Singlet O2 produced upon photoexcitation is a very important oxidative reagent. The study on its reaction with nanotube might be useful not only to evaluate the stability of the nanotube upon air exposure and sunlight, but also to modify the properties of the nanotube. Considering the unique properties and wide applications of silicon carbide nanotube (SiCNT), in this paper, we performed extensive density functional theory (DFT) calculations to study the oxidation of a series of zigzag (n,0) SiCNTs (n=6 to 12) by singlet O2. It is found that the reaction process contains two steps, namely, (i) [2+2] cycloaddition of a singlet O2 to the Si–C bond, followed by (ii) the dissociation of the O–O bond, leading to the formation of an epoxide configuration with a highly exothermicity (>4.00 eV). Compared with pure SiCNT, the cycloaddition of singlet O2 on tube leads to the decrease of the band gap, while the formation of the stable epoxy structure render band gap increase. Our results indicate that the SiCNT is more prone to be degraded after exposure to air and sunlight.  相似文献   

10.
Titanium dioxide (TiO2) films were fabricated on fluorine doped tin oxide (FTO) coated glass substrate using successive ionic layer adsorption and reaction (SILAR) method. The X-ray diffraction, scanning electron microscopy, transmission electron microscopy, optical absorption and contact angle measurement were applied to study the structural, surface morphological, optical and surface wettability properties of the as-deposited and annealed TiO2 films. The X-ray diffraction studies revealed both as-deposited and annealed TiO2 films are amorphous. Irregular shaped spherical grains of random size and well covered to the fluorine doped tin oxide coated glass substrates were observed from SEM studies with some cracks after annealing. The optical band gap values of virgin TiO2, annealed, methyl violet and rose bengal sensitized TiO2 were found to be 3.6, 3.5, 2.87 and 2.95 eV, respectively. Surface wettability studied in contact with liquid interface, showed hydrophobic nature as water contact angles were greater than 90°. The adsorption of dyes, as confirmed by the photographs, is one of the prime requirements for dye sensitized solar cells (DSSC).  相似文献   

11.
Seeking environmentally friendly gas-insulated medium has become a research hotspot in recent years. At present, C3F7CN (Heptafluoro-iso-butyronitrile) is considered to be a potential SF6 environment-friendly alternative gas and some achievements have been made in the study of its insulation and decomposition characteristics, but there are few reports on the compatibility between its characteristic decomposition products and materials. The investigation of compatibility between gas-insulated medium and material is an important part of evaluating its comprehensive performance. In this paper, we investigated the interaction between C2F5CN, CF3CN, COF2 and CF4 with the aluminium widely used in electrical equipment. It was found that the interaction between C2F5CN, CF3CN and Al (1 1 1) surface is strong. There are obvious charge transfer and electron orbital overlap between the C atom, N atom in CN group and Al (1 1 1). The interaction between COF2, CF4 and Al (1 1 1) surface is weak and van der Waal’s forces play the major role. Relevant results reveal the characteristics of C3F7CN decomposition products and provide theoretical guidance for evaluating the material compatibility between C3F7CN decomposition products and aluminium.  相似文献   

12.
The structures and energetics of the chemisorbed CO2, CHx species and H as well as C2H4 on the α-Mo2C(0 0 0 1) surface have been computed at the GGA-RPBE level of density functional theory. It is found that CO2 adsorbs dissociately into CO and O, in agreement with the experimental finding. The adsorbed O, CHx and H species prefer the site of three surface molybdenum atoms over a second layer carbon atom (VC site). On the basis of the calculated adsorption energies of CHx and H, the sequential dehydrogenation of CH4 and the C/C coupling reaction of CHx have been discussed.  相似文献   

13.
Since the development of Scanning Tunnelling Microscopy (STM) technique, considerable attention has been devoted to various molecules adsorbed on various surfaces. Also, a new concept emerged with molecules on surfaces considered as nano machines by themselves. In this context, a thorough knowledge of surfaces and adsorbed molecules at an atomic scale are thus particularly invaluable. The present work describes the first Density Functional Theory (DFT) study of adsorption of CO, CO2 and NO molecules on a BaTiO3 surface following a first preliminary calculation of O and O2 adsorption on the same surface. In the previously considered work, we found that a (0 0 1) surface with BaO termination is more stable than the one with TiO2-termination. Consequently, we extended our study to CO, CO2 and NO molecules adsorbed on a (0 0 1) surface with BaO termination. The present calculation was performed on a (1 × 1) cell with one monolayer of adsorbed molecules. Especially, a series of cases implying CO molecules adsorbed in various geometrical configurations has been examined. The corresponding adsorption energy varies in the range of −0.17 to −0.10 eV. The adsorption energy of a CO2 molecule directly located above an O surface atom (called Os) is of the order of −0.18 eV. The O-C distance length is then 1.24 Å and the O-C-O and O-C-Os angles are 134.0° and 113.0°, respectively. For NO adsorption, the most important induced structural changes are the followings: (i) the N-O bond is broken when a NO molecule is absorbed on a Ba-Os bridge site. In that case, N and O atoms are located above an O and a Ba surface atom, respectively, whereas the O-Ba-Os and N-Os-Ba angles are 106.5° and 63.0°, respectively. The N-O distance is as large as 2.58 Å and the adsorption energy is as much as −2.28 eV. (ii) In the second stable position, the NO molecule has its N atom adsorbed above an Os atom, the N-O axis being tilted toward the Ba atom. The N-Os-Ba angle is then 41.1° while the adsorption energy is only −0.10 eV. At last, the local densities of states around C, O as well as N atoms of the considered adsorbed molecules have also been discussed.  相似文献   

14.
Abstract

The IR spectra of the linkage isomers [Pd(bipy)(SCN)2] and [Pd(bipy)(NCS)2] have been determined in the C≡N stretching region (2200–2000 cm?1) and below 500 cm?1. The band shifts resulting from deuteration of the 2,2′-bipyridine (bipy) ring and 15NCS-labelling are shown to provide a ready means for distinguishing between the internal ligand modes, the μPd-N(bipy) and μPd-SCN/μPd-NCS vibrations. The assignment technique has been further extended to the complexes [Pt(bipy)(SCN)2] and [Pd(phen)(SCN)2] (phen = 1,10-phenanthroline). Finally, a comparison between the IR spectra of [Pd(bipy)(NCO)2], [Pd(bipy)(NCS)2] and [Pd(bipy)(SCN)2] reveals that the frequencies μM-NCO, μM-NCS and μM-SCN decrease in the sequence NCO > NCS > SCN.  相似文献   

15.
16.
CuInS2 ternary films were prepared by a soft solution processing, i.e. successive ionic layer absorption and reaction (SILAR) method. The films were deposited on glass substrates at room temperature and heat-treated under Ar atmosphere at 500 °C for 1 h. CuCl2 and InCl3 mixed solutions with different ionic ratios ([Cu]/[In]) were used as cation precursor and Na2S as the anion precursor. The effect of the [Cu]/[In] ratio in precursor solution on the structural, chemical stoichiometry, topographical, optical and electrical properties of CuInS2 thin films was investigated. XPS results demonstrated that stoichiometric CuInS2 film can be obtained by adjusting [Cu]/[In] ratios in solution. Chalcopyrite structure of the film was confirmed by XRD analysis. The near stoichiometric CuInS2 film has the optical band gap Eg of 1.45 and resistivity decreased with increase of [Cu]/[In] ratios.  相似文献   

17.
在柔性钼箔衬底上采用连续离子层吸附反应法(successive ionic layer absorption and reaction)制备ZnS/Cu2SnSx叠层结构的预制层薄膜,预制层薄膜在蒸发硫气氛、550 C温度条件下进行退火得到Cu2ZnSnS4吸收层.分别采用EDS,XRD,Raman,SEM表征吸收层薄膜的成分、物相和表面形貌.结果表明,退火后薄膜结晶质量良好,表面形貌致密.用在普通钠钙玻璃上采用相同工艺制备的CZTS薄膜表征薄膜的光学和电学性能,表明退火后薄膜带隙宽度为1.49 eV,在可见光区光吸收系数大于104cm 1,载流子浓度与电阻率均满足薄膜太阳电池器件对吸收层的要求.用上述柔性衬底上的吸收层制备Mo foil/CZTS/CdS/i-ZnO/ZnO:Al/Ag结构的薄膜太阳电池得到2.42%的效率,是目前报道柔性CZTS太阳电池最高效率.  相似文献   

18.
Molecular beam scattering measurements have been conducted to examine the adsorption dynamics of CO2 on Cu(1 1 0). The initial adsorption probability, S0, decreases exponentially from 0.43 ± 0.03 to a value close to the detection limit (∼0.03) within the impact energy range of Ei = (0.12-1.30) eV. S0 is independent of the adsorption temperature, Ts, and the impact angle, αi, i.e., the adsorption is non-activated and total energy scaling is obeyed. The coverage, Θ, dependent adsorption probability, S(Θ), agrees with precursor-assisted adsorption dynamics (Kisliuk type) above Ts ∼ 91 K. However, below that temperature adsorbate-assisted adsorption (S increases with Θ) has been observed. That effect is most distinct at large Ei and low Ts. The S(Θ) data have been modeled by Monte Carlo simulations. No indications of CO2 dissociation were obtained from Auger Electron Spectroscopy or the molecular beam scattering data.  相似文献   

19.
In this article, the isomerisation mechanisms of HN(NO2)2 to O2NNN(O)OH without and with catalyst X (X = H2O, (H2O)2, (H2O)3, HCOOH, H2SO4, CH3CH2COOH and HN(NO2)2) have been investigated theoretically at the CBS-QB3 level of theory. Our results show that the catalyst X (X = H2O, (H2O)2, (H2O)3, HCOOH, H2SO4 and CH3CH2COOH) shows different positive catalytic effects on reducing the apparent activation energy of the isomerisation reaction processes. Such different catalytic effects are mainly related to the number of hydrogen bonds and the size of the ring structure in X (X = H2O, (H2O)2 and (H2O)3)-assisted transition states, as well as different values of pKa for H2SO4, HCOOH and CH3CH2COOH. Very interesting is also the fact that H2SO4-assisted reaction is the most favourable for the hydrogen transfer from HN(NO2)2 to O2NNN(O)OH, due to the smallest pKa (?3.0) value of H2SO4 than H2O, HCOOH, H2SO4 and CH3CH2COOH, and also because of the largest ∠X???H???Y (the angle between the hydrogen bond donor and acceptor) involved in H2SO4-assisted transition state. Compared to the self-catalysis of the isomerisation mechanisms of HN(NO2)2 to O2NNN(O)OH, the apparent activation energy of H2SO4-assisted channel also reduces by 9.6 kcal?mol?1, indicating that H2SO4 can affect the isomerisation of HN(NO2)2 to O2NNN(O)OH, most obvious among all the catalysts H2O, (H2O)2, (H2O)3, HCOOH, H2SO4, CH3CH2COOH and HN(NO2)2.  相似文献   

20.
The surface reaction and desorption of sulfur on Rh(1 0 0) induced by O2 and H2O are investigated with X-ray photoelectron spectroscopy (XPS) technique. The Rh(1 0 0) sample covered with atomic sulfur is prepared by means of the exposure to H2S gas, and subsequently the sample is annealed under O2 or H2O atmosphere. The XPS results show that atomic sulfur adsorbed on Rh(1 0 0) reacts with O2 and desorbs from the surface at 473 K or more. On the other hand, atomic sulfur can not be removed from Rh(1 0 0) surface by H2O at any temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号