共查询到20条相似文献,搜索用时 0 毫秒
1.
Jingjie Han Yandan Zhang Chifei Wu Linsheng Xie 《Journal of Macromolecular Science: Physics》2015,54(4):401-410
The wet sliding abrasion and abrasion behavior of carbon black (CB)-filled natural rubber (NR) composites were investigated using a Deutsche Industrie Normen (DIN) abrader and compared to their dry abrasion resistance. The results showed that water tended to lubricate the contact between the rubber and the abrader and thus the abrasion loss was reduced. At different applied loads, the abrasion mechanism of the filled vulcanizates was different. When the applied load was below the turning point, the rubber abrasion was mainly fatigue abrasion and the main factor to influence the abrasion was the dynamic loss factor tanδ of the rubber. When the applied load was above the turning point, the rubber abrasion was mainly pattern abrasion and the main factors to influence the abrasion were the mechanical properties, in particular tensile and tear strength. 相似文献
2.
Synthesis and Characterization of Surface-modified Rutile Nanoparticles And Transparent Polymer Composites Thereof 总被引:9,自引:0,他引:9
Nussbaumer René J. Caseri Walter Tervoort Theo Smith Paul 《Journal of nanoparticle research》2002,4(4):319-323
Nanoparticles of rutile, a crystal modification of titanium dioxide, were synthesized in strongly acidic solutions by hydrolysis of titanium tetrachloride. The particles of average diameter 2nm were coated in situ with a layer of dodecylbenzenesulfonic acid (DBSA) and isolated as a powder. Remarkably, dispersions of this powder in toluene were essentially transparent at the visible wavelengths but absorbed UV radiation over a broad wavelength range. The DBSA-coated rutile was also embedded in poly(styrene) and a poly(carbonate), resulting in polymer nanocomposites acting as visually transparent UV filters. 相似文献
3.
S. Thongsang 《Journal of Macromolecular Science: Physics》2013,52(4):825-840
This article investigated the elastic response of natural rubber (NR) compounds filled with silica from fly ash particles (FASi) and commercial precipitated silica (PSi), through a dynamic rebound test. The effects of silica content and initial drop‐height on the height and number of rebounds, dynamic stiffness, and the energy loss were of interest. The results suggested that the unfilled NR vulcanizates exhibited a greater elastic response than the FASi and PSi‐filled vulcanized composites. For given silica contents, the NR compounds with FASi had better elastic response than those with PSi, where the elastic response decreased with an increase in silica content. The greater the silica contents, the higher the dynamic stiffness of the composites. The initial drop‐height had no effects on the elastic response change for the unfilled NR compound, but resulted in an increase in the energy loss for the silica‐filled NR composites. The differences in the elastic responses for the NR compounds filled with silica from FASi and PSi were associated with the differences in crosslink density and the filler–filler interaction influenced by content of bis(3‐triethoxysilylpropyl) tetrasulfane (designated as Si69) used. 相似文献
4.
Haoqun Hong Hui He Demin Jia Haiyan Zhang 《Journal of Macromolecular Science: Physics》2013,52(8):1625-1636
The preparation of natural rubber/wood flour (NR/WF) composites and the influence of WF content, modification, and particle size on the vulcanizing behavior, mechanical properties, and water absorption of NR/WF composites are described. Results show that the addition of WF into NR delayed the scorching time and vulcanizing time of NR. The appropriate WF contents can improve the mechanical properties of NR. However, the overloading of WF destroys the mechanical properties of NR. The addition of WF increased the water absorption of NR. The silicone couple agents that were used to modify the WF had little effect on the water absorption of NR/WF composites. Decreasing the WF particle size enhanced the water absorption of NR/WF composites because the water-absorbing surface area increased with decreasing WF particle size. The water absorption of sisal-fiber-filled NR-based composites was larger than that of the WF-filled NR-based composites. A useful equation, w=ktn , was inferred from the water absorption results to calculate the water absorption (w) of the NR/WF composites as a function of time (t), where k was a constant concerning the compounds’ character that was primarily determined by the WF's character and n was the power of time that was related to the NR's inherent character, such as cross-linking density, and primarily determined the water absorption rate. 相似文献
5.
Hangxin Lei Guangsu Huang Gengsheng Weng 《Journal of Macromolecular Science: Physics》2013,52(1):84-94
Nanosilica was modified with a silane coupling agent 3-Glycidoxypro- pyltrimethoxysilane (KH-560) and then reacted with p-aminodiphenylamine (RT) to obtain a new nanosilica-based antioxidant. Fourier transform infrared and thermogravimetric (TGA) analysis measurements confirmed the successful grafting of RT to the nanosilica surface. Scanning electron microscope analysis showed that the nanosilica-based antioxidant could be homogeneously dispersed in a natural rubber matrix. Differential scanning calorimetry and TGA were used to measure the thermal oxidative behavior of rubber vulcanizates with different types of fillers. It was found that the thermal oxidative stability of rubber vulcanizates with the nanosilica-based antioxidant was improved to a greater extent than that with other fillers examined. 相似文献
6.
Fabio Roberto Passador Galia Johanna Alzate Rojas Luiz Antonio Pessan 《Journal of Macromolecular Science: Physics》2013,52(8):1142-1157
Thermoplastic elastomers (TPEs) based on natural rubber (NR)/polypropylene (PP) with different blend ratios were prepared and studied. The TPEs were obtained by dynamic vulcanization of NR/PP using a sulfur (S)/N-tert-butyl-2-benzothiazolesulphenamide (TBBS) and tetramethylthiuram disulphide (TMTD) curative system during processing in the melt state in an internal mixer equipped with cam rotors. Rheological, thermal, mechanical, dynamic, and morphological properties of the TPEs prepared were investigated. Based on this study a mechanism for the NR crosslinking was proposed where the sulfur vulcanization occurs through radical substitution in the forms of polysulfide bridges. The dynamic vulcanization process increases the stiffness of the NR phase in the TPEs and modifies the rheological and thermal behavior of the system compared to the behavior of the basic material PP. The crosslinked NR particles restrict the spherulitic growth and the regular arrangement of the spherulites of PP phase, decreasing the crystallinity degree. On the other hand, a reduction of mobility of the chain segments was also observed and, consequently, an increase of the Tg values. NR/PP TPEs with high content of NR showed superior mechanical performance compared to the uncrosslinked NR/PP blends in terms of tensile strength, Young's modulus and hardness. An increase of approximately 320% in Young's modulus values was obtained for the NR70/PP30 TPE compared to NR70/PP30. Morphological studies revealed the formation of large aggregates of NR domains in NR/PP TPEs which increased in size with an increase of the rubber content. 相似文献
7.
Yanfen Lin Anqiang Zhang Jiannan Sun Lianshi Wang 《Journal of Macromolecular Science: Physics》2013,52(11):1494-1507
Using the characteristics of silica sol dispersing well in water and easy formation of silica gel when the silica sol is heated, by mixing a system of concentrated natural rubber latex and silica sol, the silica sol can in-situ generate SiO2 particles when heated. After coagulation of the mixed system, natural rubber/nanosilica composites C(NR/nSiO2) were obtained. The composites C(NR/nSiO2) and their vulcanizates were studied using a rubber processing analyzer (RPA), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The influence of silica contents on the C(NR/nSiO2) vulcanizates mechanical properties, cross-linking degree, Payne effect, dissipation factor (tanδ), and the particle size and dispersion of SiO2 in NR were investigated. The results obtained were compared with the NR/SiO2 composites based on traditional dry mixing of bale natural rubber and precipitated silica (white carbon black). The results showed that when using a sulfur curing system with a silica coupling agent (Si69) in C(NR/nSiO2), the vulcanizate had better mechanical properties, higher wet resistance, and lower rolling resistance than those without Si69. In the composites C(NR/nSiO2) and their vulcanizates, the SiO2 particles’ average grain diameter was 60 nm, and the good-dispersion of the in-situ generated SiO2 in the rubber matrix were a significant contribution to the satisfactory properties of C(NR/nSiO2) composites and their vulcanizates. 相似文献
8.
Shengying Qian Jianfeng Huang Weihong Guo 《Journal of Macromolecular Science: Physics》2013,52(3):453-466
A new method was applied to modify the surface activity of virginal carbon black (VCB). LA‐57, one kind of hindered amine light stabilizer, was adsorbed onto the carbon black surface through a strong shear force induced by the screws of a HAAKE internal mixer. The modified carbon black (MCB) was characterized by FT‐IR and thermogravimetric analysis (TGA). The bound rubber content of the natural rubber (NR) compounded with MCB and VCB varied with the fraction of LA‐57 on the MCB surface. The nonlinear effect at small strains, generally referred as the Payne effect, was investigated in the rubber compounds based on the different bound rubber contents. The NR compound containing the lowest bound rubber content had an obvious Payne effect. Based on the bound rubber content, the types of filler network varied from direct contact mode to the joint rubber shell mechanism. 相似文献
9.
10.
Changjie Yin Qiuyu Zhang Jianxun Liu Yan Gao Yubo Sun Qingshan Zhang 《Journal of Macromolecular Science: Physics》2013,52(7):645-658
Vinyltriethoxysilane (VTES) was grafted onto natural rubber (NR) in latex form, using potassium persulfate (KPS) as initiator. The VTES grafted NR (NR-g-VTES) was then further reinforced with graphene oxide (GO) by a mechanical mixing method with different GO loadings to get the rubber composite (GO/NR-g-VTES). The NR-g-VTES was characterized and confirmed by attenuated total teflectance-Fourier transforms infrared spectroscopy (ATR-FTIR). The effect of GO content on the curing characteristics and resulting mechanical properties of the GO/NR-g-VTES were studied and compared with neat NR filled with GO (NR/GO). The maximum and minimum torque and the tensile and tear strength of the NR-g-VTES/GO composites were higher than that of NR/GO. The samples containing low GO concentration showed maximum torque and tensile and tear strength. Dynamic mechanical analysis showed that the interaction between GO and NR-g-VTES was better than that of the GO-reinforced NR. 相似文献
11.
Crosslink density is an important structural parameter for cured rubber. Natural rubber (NR) vulcanizates with different crosslink densities were obtained through using different sulfur and accelerator amounts and different accelerator types. The crosslink density was characterized by an 1 H-NMR technique and its influence on mechanical properties, such as Shore A hardness, 300% modulus, tensile strength, and elongation at break, of NR vulcanizates was investigated. The results showed that both the sulfur amount and the accelerator type and amount had an influence on the crosslink density of the NR networks. The relationship between total crosslink density and mechanical properties was also studied. The results, by changing either the sulfur or the accelerator amount, showed that tensile strength of NR vulcanizates reached maximum value when the total crosslink density was around 13.5 × 10?5 mol/cm3, equivalently the average molecular weight of the intercrosslink chains (Mc) was around 7000 g/mol. The maximum value of tensile strength came from the balance between contributions of crosslink joints and stretch-induced orientation and/or crystallization of intercrosslink chains. The study on influence of total crosslink density on Shore A hardness and 300% modulus of NR vulcanizates showed that they both increased linearly with the crosslink density, the slopes were 2.7 ~ 3.0 cm3/10?5 mol and 0.27 ~ 0.31 MPa cm3/10?5 mol for Shore A hardness and 300% modulus, respectively, whether the crosslink density was varied by sulfur or accelerator. 相似文献
12.
13.
Yanfen Lin Anqiang Zhang Lianshi Wang Chengyu Pei Qin Gu 《Journal of Macromolecular Science: Physics》2013,52(7):1267-1281
Carbon black (CB) filled powdered natural rubber [P(NR/N234)] was prepared using a patented method of latex/CB coagulation technology. The influence of curing recipes and CB contents on the curing, mechanical, and dynamic properties were studied in depth, and the results were compared with that of NR/N234 compounds based on traditional dry mixing of bale NR and CB. The results showed that, compared with NR/N234, P(NR/N234) showed higher tensile strength, tear strength, rebound elasticity and flexibilities, and the antiabrasion properties were similar, while the dynamic temperature-build-up and dynamic compression permanent set were about 50% of that of NR/N234. The analysis based on scanning electron micrographs (SEM) and the Payne effect showed that the fine dispersion of CB in the rubber and the enhanced interaction between CB and rubber contributed to the excellent properties of P(NR/N234), sufficient that they make P(NR/N234) a potential material for the tread compounds of heavy-duty all-steel cord radial tires. 相似文献
14.
Xuelian He Zheng Peng Jingjie Han Puwang Li Haiyan Xu Chifei Wu 《Journal of Macromolecular Science: Physics》2013,52(12):2334-2346
A novel strategy of radical polymerization of sodium 4-styrenesulfonate on the surface of carbon black (CB) in the solid state was developed to prepare hydrophilic carbon nanoparticles (PNASS-CB). A high performance natural rubber latex (NRL)/PNASS-CB composite was produced by the latex compounding technique. Scanning electron microscope shows considerable improvement in the dispersion of PNASS-CB in rubber matrix. The lower degree of filler–filler networks and the stronger filler–rubber interaction of PNASS-CB in rubber matrix were confirmed by dynamic mechanical thermal analysis. Rheometric properties of NRL/PNASS-CB, like scorch time and optimum cure time, decreased. Tensile strength, tear strength, and elongation at break increased due to stronger interaction between the PNASS-CB and rubber matrix. Dynamic mechanical properties of the modified carbon nanoparticles further corroborated a significant contribution from the better dispersion and efficient load transfer of PNASS-CB on the static and dynamic mechanical properties of composites. 相似文献
15.
Liangliang Qu Yijing Nie Guangsu Huang Gengsheng Weng Jinrong Wu 《Journal of Macromolecular Science: Physics》2013,52(8):1646-1657
The dynamic fatigue behaviors of natural rubber (NR) filled with carbon black (CB) and both nanoclay (NC) and CB at same hardness was evaluated using the stepwise increasing strain test (SIST) and long-term testing. Compared with NR/CB composites, NR/CB/NC nanocomposites exhibited higher fatigue-limited strain, stronger dynamic stress relaxation, and longer compression fatigue life. By examining the fracture morphologies, nonlinear viscoelastic behavior, and hysteresis loss of filled NR, it was found that NR, synergisticly reinforced by NC and CB, exhibited improved anti-fatigue ability than NR filled with CB due to stronger filler–filler interactions between NC and CB (a local filler network) and the high aspect ratio and typical lamellar structure of NC. 相似文献
16.
The CdS nanoparticles whose structure is similar to a strong electrolyte were synthesized by the colloidal chemical method. The CdS nanoparticles with Cd2+-rich surface are capped by the electrically neutral ligand of 2,2-bipyridine (bpy), and the counterion, BPh4
-, is adsorbed around the particle as balance charge. The donation from 2,2-bipyridine at 2-position to the Cd2+-rich surface of the CdS nanoparticles was characterized by X-ray photoelectron spectroscopy (XPS). These CdS nanoparticles can redisperse in pyridine (py) or DMF, and have high stability. The determination of electroconductivity and the electrophoresis deposition in dilute solution containing the CdS nanoparticles further prove the rationality of the above electrolyte structure of the CdS nanoparticles. 相似文献
17.
The stress-strain behaviors of natural rubber (NR)-zinc methacrylate (ZDMA) composite have been studied by uniaxial tension. The results indicated that there was a large reinforcement by ZDMA and the NR/ZDMA composites exhibited a high stress-softening effect. Meanwhile, the recovery stretch curve was close to the second stretch curve; thus a weak stress recovery of the composites was shown. The analysis of crosslink density indicated that the damage to the crosslink network was mainly due to the breakage of ionic crosslinks at low strain (100%). A more developed ionic crosslink network was formed at a higher content of ZDMA. When the vulcanizate is subjected to loading in tension, the ionic crosslink network will suffer the force first. Next, the slippage of ionic bonds will take place under the stress. A new ionic crosslink network might be formed rapidly after the ionic bonds were broken during the stretching. Therefore, it could not return to the initial state. The analysis of crosslink density and stress recovery indicated that the rubber chains could be adsorbed to the ZDMA aggregates due to the formation of poly-zinc methacrylate (PZDMA). A molecular analysis of NR/ZDMA composites is proposed in the last part of this article. 相似文献
18.
研究了不同粒径ZnO纳米颗粒样品(17~300nm)的时间光谱,通过对各粒径样品时间积分光谱的谱带结构进行高斯拟合解迭,发现光子能量位于ZnO谱带低能侧的高斯拟合成份Xc3的荧光中心波长随粒径的减小而红移,同时发光带的寿命也随之缩短.基于ZnO谱带低能侧的高斯拟合峰发光带强烈依赖于ZnO样品粒径的谱带特性,提出了与ZnO禁带内的表面态能级有关,同时研究表明,表面态在尺寸降到一定程度的纳米体系中起着重要的作用. 相似文献
19.
CdHgTe nanoparticles (NPs) with the emission in the near-infrared regions were prepared in aqueous solution, and were characterized
by transmission electron microscopy, X-ray diffraction spectrometry, spectrofluorometry and ultraviolet-visible spectrometry.
Based on the fluorescence quenching of CdHgTe NPs in the presence of proteins, a novel method for the determination of proteins
with CdHgTe NPs as a near-infrared fluorescence probe was developed. Maximum fluorescence quenching was observed with the
excitation and emission wavelengths of 500 and 693 nm, respectively. Under the optimal conditions, the calibration graphs
were linear in the range of 0.04 × 10−6–5.6 × 10−6 g ml−1 for lysozyme (Lyz) and 0.06 × 10−6–6.1 × 10−6 g ml−1 for bovine hemoglobin (BHb), respectively. The limits of detection were 13 ng ml−1 for Lyz and 27 ng ml−1 for BHb, respectively. Four synthetic samples were determined and the results were satisfied. 相似文献
20.
Synthesis and Characterization of Conductive Polyaniline Nanoparticles Through Ultrasonic Assisted Inverse Microemulsion Polymerization 总被引:7,自引:0,他引:7
Polyaniline (PANI) nanoparticles were prepared through ultrasonic assisted inverse microemulsion polymerization method. Polymerization of aniline was confined to a nanoreactor named water pool surrounded by surfactant molecules in the apolar continuous phase. The size of the PANI nanoparticles decreases with the decrease of the value. The spherical nanoparticles (10–50 nm) can further form the uniform submicrometer aggregates with a size of 200 400 nm induced by ethanol, and the size of the aggregate decreases with the decrease of the value. The morphology of aggregates as well as aggregation behavior of PANI nanoparticles were characterized by TEM. The polymerization rate, UV–vis absorption spectra, FTIR spectra, XRD, as well as the conductivity were examined at different [water]/[surfactant] molar ratio, i.e. value. Ultrasound enhances the polymerization rate of aniline that is usually very slow under conventional stirring in inverse microemulsion and contributes to produce spherical nanoparticles. Also, ultrasound irradiation promotes the diffusion of HCl molecules and improves the degree of doping. Polymerization of aniline occurred in the confined nanoreactor in microemulsion and strengthens the hydrogen-bonding of amine and imine of PANI molecular chains, which improves the degree of crystallinity. The conductivity of obtained PANI is in the magnitude of 10-1 S cm-1, and is changed with value. 相似文献