首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
针对近红外光谱高维、高冗余、非线性和小样本等特点导致光谱相似性度量时出现的“维度灾难”,提出一种基于核映射和rank-order距离的局部保持投影(KRLPP)算法。首先将光谱数据经过核变换映射到更高维空间,有效保证了流形结构的非线性特征。然后改进局部保持投影(LPP)算法对数据进行降维操作,将rank-order距离替代传统的欧氏距离或测地线距离,通过共享邻近点的信息,得到更加准确的局部邻域关系。最后在低维空间通过距离的计算实现光谱的度量。该方法不仅有效解决了高维空间存在的“距离失效”问题,同时还提高了相似性度量结果的精度。为了验证KRLPP算法的有效性,首先根据降维前后数据集信息残差的变化确定了最佳参数近邻点的个数k和降维后的维数d。其次,从光谱降维投影效果和模型分类效果两个角度与PCA,LPP和INLPP算法进行了对比,结果表明KRLPP算法对于烟叶的部位有较好的区分能力,降维效果以及对于不同部位的正确识别率明显优于PCA,LPP和INLPP。最后,从某品牌卷烟叶组配方中选取了5个代表性烟叶作为目标烟叶,分别采用PCA,LPP和KRLPP方法从300个用于配方维护的烟叶样品中为每个目标烟叶寻找相似烟叶,并从化学成分和感官评价两方面对替换前后的烟叶及叶组配方进行了评价分析。其中LPP和KRLPP用于降维的参数选择保持一致,PCA选择前6个主成分。结果表明,由KRLPP选出的替换烟叶与替换配方在总糖、还原糖、总烟碱、总氮等化学成分以及香气、烟气、口感等感官指标上较PCA、LPP方法差异最小,相似性度量准确度最高。该方法可应用于配方产品替换原料的查找,辅助企业实现产品质量的维护。  相似文献   

3.
For a general class of lattice spin systems, we prove that an abstract Gaussian concentration bound implies positivity of the lower relative entropy density. As a consequence, we obtain uniqueness of translation-invariant Gibbs measures from the Gaussian concentration bound in this general setting. This extends earlier results with a different and very short proof.  相似文献   

4.
In this paper, using relative entropy, we study monogamous properties of measurement-induced nonlocality based on relative entropy. Depending on different measurement sides, we provide necessary and sufficient conditions for two types of monogamy inequalities. By the concept of nonlocality monogamy score, we find a necessary condition of the vanished nonlocality monogamy score for arbitrary three-party states. In addition, two types of necessary and sufficient conditions of the vanished nonlocality monogamy scores are obtained for any pure states. As an application, we show that measurement-induced nonlocality based on relative entropy can be viewed as a "nonlocality witness" to distinguish generalized GHZ states from the generalized W states.  相似文献   

5.
The fundamental concept of relative entropy is extended to a functional that is regular-valued also on arbitrary pairs of nonfaithful states of open quantum systems. This regularized version preserves almost all important properties of ordinary relative entropy such as joint convexity and contractivity under completely positive quantum dynamical semigroup time evolution. On this basis a generalized formula for entropy production is proposed, the applicability of which is tested in models of irreversible processes. The dynamics of the latter is determined by either Markovian or non-Markovian master equations and involves all types of states.  相似文献   

6.
This paper verifies the feasibility of the relative entropy method in selecting the most suitable statistical distribution for the experimental data, which do not follow an exponential distribution. The efficiency of the relative entropy method is tested through the fractional order moment and the logarithmic moment in terms of the experimental data of carbon fiber/epoxy composites with different stress amplitudes. For better usage of the relative entropy method, the efficient range of its application is also studied. The application results show that the relative entropy method is not very fit for choosing the proper distribution for non-exponential random data when the heavy tail trait of the experimental data is emphasized. It is not consistent with the Kolmogorov–Smirnov test but is consistent with the residual sum of squares in the least squares method whenever it is calculated by the fractional moment or the logarithmic moment. Under different stress amplitudes, the relative entropy method has different performances.  相似文献   

7.
The extension of sample entropy methodologies to multivariate signals has received considerable attention, with traditional univariate entropy methods, such as sample entropy (SampEn) and fuzzy entropy (FuzzyEn), introduced to measure the complexity of chaotic systems in terms of irregularity and randomness. The corresponding multivariate methods, multivariate multiscale sample entropy (MMSE) and multivariate multiscale fuzzy entropy (MMFE), were developed to explore the structural richness within signals at high scales. However, the requirement of high scale limits the selection of embedding dimension and thus, the performance is unavoidably restricted by the trade-off between the data size and the required high scale. More importantly, the scale of interest in different situations is varying, yet little is known about the optimal setting of the scale range in MMSE and MMFE. To this end, we extend the univariate cosine similarity entropy (CSE) method to the multivariate case, and show that the resulting multivariate multiscale cosine similarity entropy (MMCSE) is capable of quantifying structural complexity through the degree of self-correlation within signals. The proposed approach relaxes the prohibitive constraints between the embedding dimension and data length, and aims to quantify the structural complexity based on the degree of self-correlation at low scales. The proposed MMCSE is applied to the examination of the complex and quaternion circularity properties of signals with varying correlation behaviors, and simulations show the MMCSE outperforming the standard methods, MMSE and MMFE.  相似文献   

8.
In the era of the Internet of Things and big data, we are faced with the management of a flood of information. The complexity and amount of data presented to the decision-maker are enormous, and existing methods often fail to derive nonredundant information quickly. Thus, the selection of the most satisfactory set of solutions is often a struggle. This article investigates the possibilities of using the entropy measure as an indicator of data difficulty. To do so, we focus on real-world data covering various fields related to markets (the real estate market and financial markets), sports data, fake news data, and more. The problem is twofold: First, since we deal with unprocessed, inconsistent data, it is necessary to perform additional preprocessing. Therefore, the second step of our research is using the entropy-based measure to capture the nonredundant, noncorrelated core information from the data. Research is conducted using well-known algorithms from the classification domain to investigate the quality of solutions derived based on initial preprocessing and the information indicated by the entropy measure. Eventually, the best 25% (in the sense of entropy measure) attributes are selected to perform the whole classification procedure once again, and the results are compared.  相似文献   

9.
Selective assembly is the method of obtaining high precision assemblies from relatively low precision components. For precision instruments, the geometric error on mating surface is an important factor affecting assembly accuracy. Different from the traditional selective assembly method, this paper proposes an optimization method of selective assembly for shafts and holes based on relative entropy and dynamic programming. In this method, relative entropy is applied to evaluate the clearance uniformity between shafts and holes, and dynamic programming is used to optimize selective assembly of batches of shafts and holes. In this paper, the case studied has 8 shafts and 20 holes, which need to be assembled into 8 products. The results show that optimal combinations are selected, which provide new insights into selective assembly optimization and lay the foundation for selective assembly of multi-batch precision parts.  相似文献   

10.
11.
CRISPR/Cas9 is a powerful genome-editing technology that has been widely applied in targeted gene repair and gene expression regulation. One of the main challenges for the CRISPR/Cas9 system is the occurrence of unexpected cleavage at some sites (off-targets) and predicting them is necessary due to its relevance in gene editing research. Very few deep learning models have been developed so far to predict the off-target propensity of single guide RNA (sgRNA) at specific DNA fragments by using artificial feature extract operations and machine learning techniques; however, this is a convoluted process that is difficult to understand and implement for researchers. In this research work, we introduce a novel graph-based approach to predict off-target efficacy of sgRNA in the CRISPR/Cas9 system that is easy to understand and replicate for researchers. This is achieved by creating a graph with sequences as nodes and by using a link prediction method to predict the presence of links between sgRNA and off-target inducing target DNA sequences. Features for the sequences are extracted from within the sequences. We used HEK293 and K562 t datasets in our experiments. GCN predicted the off-target gene knockouts (using link prediction) by predicting the links between sgRNA and off-target sequences with an auROC value of 0.987.  相似文献   

12.
The maximum entropy principle consists of two steps: The first step is to find the distribution which maximizes entropy under given constraints. The second step is to calculate the corresponding thermodynamic quantities. The second part is determined by Lagrange multipliers’ relation to the measurable physical quantities as temperature or Helmholtz free energy/free entropy. We show that for a given MaxEnt distribution, the whole class of entropies and constraints leads to the same distribution but generally different thermodynamics. Two simple classes of transformations that preserve the MaxEnt distributions are studied: The first case is a transform of the entropy to an arbitrary increasing function of that entropy. The second case is the transform of the energetic constraint to a combination of the normalization and energetic constraints. We derive group transformations of the Lagrange multipliers corresponding to these transformations and determine their connections to thermodynamic quantities. For each case, we provide a simple example of this transformation.  相似文献   

13.
Entropy is intrinsic to the geographical distribution of a biological species. A species distribution with higher entropy involves more uncertainty, i.e., is more gradually constrained by the environment. Species distribution modelling tries to yield models with low uncertainty but normally has to reduce uncertainty by increasing their complexity, which is detrimental for another desirable property of the models, parsimony. By modelling the distribution of 18 vertebrate species in mainland Spain, we show that entropy may be computed along the forward-backwards stepwise selection of variables in Logistic Regression Models to check whether uncertainty is reduced at each step. In general, a reduction of entropy was produced asymptotically at each step of the model. This asymptote could be used to distinguish the entropy attributable to the species distribution from that attributable to model misspecification. We discussed the use of fuzzy entropy for this end because it produces results that are commensurable between species and study areas. Using a stepwise approach and fuzzy entropy may be helpful to counterbalance the uncertainty and the complexity of the models. The model yielded at the step with the lowest fuzzy entropy combines the reduction of uncertainty with parsimony, which results in high efficiency.  相似文献   

14.
Multi-source information fusion is widely used because of its similarity to practical engineering situations. With the development of science and technology, the sources of information collected under engineering projects and scientific research are more diverse. To extract helpful information from multi-source information, in this paper, we propose a multi-source information fusion method based on the Dempster-Shafer (DS) evidence theory with the negation of reconstructed basic probability assignments (nrBPA). To determine the initial basic probability assignment (BPA), the Gaussian distribution BPA functions with padding terms are used. After that, nrBPAs are determined by two processes, reassigning the high blur degree BPA and transforming them into the form of negation. In addition, evidence of preliminary fusion is obtained using the entropy weight method based on the improved belief entropy of nrBPAs. The final fusion results are calculated from the preliminary fused evidence through the Dempster’s combination rule. In the experimental section, the UCI iris data set and the wine data set are used for validating the arithmetic processes of the proposed method. In the comparative analysis, the effectiveness of the BPA determination using a padded Gaussian function is verified by discussing the classification task with the iris data set. Subsequently, the comparison with other methods using the cross-validation method proves that the proposed method is robust. Notably, the classification accuracy of the iris data set using the proposed method can reach an accuracy of 97.04%, which is higher than many other methods.  相似文献   

15.
Despite the increased attention that has been given to the unmanned aerial vehicle (UAV)-based magnetic survey systems in the past decade, the processing of UAV magnetic data is still a tough task. In this paper, we propose a novel noise reduction method of UAV magnetic data based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), permutation entropy (PE), correlation coefficient and wavelet threshold denoising. The original signal is first decomposed into several intrinsic mode functions (IMFs) by CEEMDAN, and the PE of each IMF is calculated. Second, IMFs are divided into four categories according to the quartiles of PE, namely, noise IMFs, noise-dominant IMFs, signal-dominant IMFs, and signal IMFs. Then the noise IMFs are removed, and correlation coefficients are used to identify the real signal-dominant IMFs. Finally, the wavelet threshold denoising is applied to the real signal-dominant IMFs, the denoised signal can be obtained by combining the signal IMFs and the denoised IMFs. Both synthetic and field experiments are conducted to verify the effectiveness of the proposed method. The results show that the proposed method can eliminate the interference to a great extent, which lays a foundation for the further interpretation of UAV magnetic data.  相似文献   

16.
Dempster-Shafer (DS) evidence theory is widely used in various fields of uncertain information processing, but it may produce counterintuitive results when dealing with conflicting data. Therefore, this paper proposes a new data fusion method which combines the Deng entropy and the negation of basic probability assignment (BPA). In this method, the uncertain degree in the original BPA and the negation of BPA are considered simultaneously. The degree of uncertainty of BPA and negation of BPA is measured by the Deng entropy, and the two uncertain measurement results are integrated as the final uncertainty degree of the evidence. This new method can not only deal with the data fusion of conflicting evidence, but it can also obtain more uncertain information through the negation of BPA, which is of great help to improve the accuracy of information processing and to reduce the loss of information. We apply it to numerical examples and fault diagnosis experiments to verify the effectiveness and superiority of the method. In addition, some open issues existing in current work, such as the limitations of the Dempster-Shafer theory (DST) under the open world assumption and the necessary properties of uncertainty measurement methods, are also discussed in this paper.  相似文献   

17.
Previous hotel performance studies neglected the role of information entropy in feedback processes between input and output management. This paper focuses on this gap by exploring the relationship between hotel performance at the industry level and the capability of learning by doing and adopting best practices using a sample of 153 UK hotels over a 10-year period between 2008–2017. Besides, this research also fills a literature gap by addressing the issues of measuring hotel performance in light of negative outputs. In order to achieve this, we apply a novel Modified slack-based model for the efficiency analysis and Least Absolute Shrinkage and Selection Operator to examine the influence of entropy related variable on efficiency score. The Results indicate that less can be learnt from inputs than from outputs to improve efficiency levels and resource allocation is more balanced than cash flow and liquidity. The findings suggest that market dynamics explains the cash flow generation potential and liquidity. We find that market conditions are increasingly offering the opportunities for learning and improving hotel efficiency. The results report that the distinctive characteristic of superior performance in hotel operations is the capability to match the cash flow generation potential with market opportunities.  相似文献   

18.
Korean river design standards set general design standards for rivers and river-related projects in Korea, which systematize the technologies and methods involved in river-related projects. This includes measurement methods for parts necessary for river design, but does not include information on shear stress. Shear stress is one of the factors necessary for river design and operation. Shear stress is one of the most important hydraulic factors used in the fields of water, especially for artificial channel design. Shear stress is calculated from the frictional force caused by viscosity and fluctuating fluid velocity. Current methods are based on past calculations, but factors such as boundary shear stress or energy gradient are difficult to actually measure or estimate. The point velocity throughout the entire cross-section is needed to calculate the velocity gradient. In other words, the current Korean river design standards use tractive force and critical tractive force instead of shear stress because it is more difficult to calculate the shear stress in the current method. However, it is difficult to calculate the exact value due to the limitations of the formula to obtain the river factor called the tractive force. In addition, tractive force has limitations that use an empirically identified base value for use in practice. This paper focuses on the modeling of shear-stress distribution in open channel turbulent flow using entropy theory. In addition, this study suggests a shear stress distribution formula, which can easily be used in practice after calculating the river-specific factor T. The tractive force and critical tractive force in the Korean river design standards should be modified by the shear stress obtained by the proposed shear stress distribution method. The present study therefore focuses on the modeling of shear stress distribution in an open channel turbulent flow using entropy theory. The shear stress distribution model is tested using a wide range of forty-two experimental runs collected from the literature. Then, an error analysis is performed to further evaluate the accuracy of the proposed model. The results reveal a correlation coefficient of approximately 0.95–0.99, indicating that the proposed method can estimate shear-stress distribution accurately. Based on this, the results of the distribution of shear stress after calculating the river-specific factors show a correlation coefficient of about 0.86 to 0.98, which suggests that the equation can be applied in practice.  相似文献   

19.
倾斜阔叶木枝干弯曲部位的上端在拉伸应力影响下通常会形成受拉木.区别于受拉伸部位下方的对应木,受拉木细胞壁通常会出现理化特性变异的现象,主要归因于细胞次生壁内侧胶质层的形成.采用透射电子显微成像技术揭示了黑杨受拉木与对应木纤维细胞壁分层结构特点,并借助532 nm共聚焦显微拉曼光谱成像(空间分辨率约为0.5μm)及图像叠...  相似文献   

20.
The ever-increasing travel demand has brought great challenges to the organization, operation, and management of the subway system. An accurate estimation of passenger flow distribution can help subway operators design corresponding operation plans and strategies scientifically. Although some literature has studied the problem of passenger flow distribution by analyzing the passengers’ path choice behaviors based on AFC (automated fare collection) data, few studies focus on the passenger flow distribution while considering the passenger–train matching probability, which is the key problem of passenger flow distribution. Specifically, the existing methods have not been applied to practical large-scale subway networks due to the computational complexity. To fill this research gap, this paper analyzes the relationship between passenger travel behavior and train operation in the space and time dimension and formulates the passenger–train matching probability by using multi-source data including AFC, train timetables, and network topology. Then, a reverse derivation method, which can reduce the scale of possible train combinations for passengers, is proposed to improve the computational efficiency. Simultaneously, an estimation method of passenger flow distribution is presented based on the passenger–train matching probability. Finally, two sets of experiments, including an accuracy verification experiment based on synthetic data and a comparison experiment based on real data from the Beijing subway, are conducted to verify the effectiveness of the proposed method. The calculation results show that the proposed method has a good accuracy and computational efficiency for a large-scale subway network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号