首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
正乙烯是有机化工和石油化工最重要的基础原料。目前,乙烯主要来源于石油裂解。生物质乙醇制乙烯以及高级烃类化合物受到了学术界和工业界的关注~(1–3)。与传统的乙醇脱水制乙烯的氧化铝催化剂相比,沸石分子筛,尤其是ZSM-5或改性ZSM-5,具有更高的乙烯选择性和低温反应活性~(4,5)。乙醇脱水的第一步就是乙烯的生成,随后乙烯的  相似文献   

2.
王雪婷  丁伟 《化学教育》2012,33(3):59+63
现行高中化学教材中乙醇脱水制乙烯的实验多用浓硫酸或五氧化二磷作催化剂,均存在诸多缺陷.笔者尝试用三氯化铁作催化剂,可使反应体系在80℃左右产生大量乙烯气体,且反应时间短,现象明显,几乎无副反应发生.  相似文献   

3.
兰彧  丁伟 《化学教育》2019,40(23):72-74
针对浓硫酸或五氧化二磷作催化剂的不足,该研究采用无水三氯化铝催化乙醇制乙烯,可使反应体系在120~130℃左右产生大量乙烯气体。同时从理论上探究了无水三氯化铝催化乙醇脱水的机理,并从教学演示实验的角度改进了反应装置,取得了较好的实验效果。  相似文献   

4.
采用离子交换法分别制备了铁、钴、镍改性的HZSM-5分子筛催化剂.在连续流动固定床微型反应装置上对催化剂进行了活性评价,结果表明镍改性的催化剂具有较好的低温活性.采用透射电镜(TEM),X射线衍射(XRD),吡啶程序升温脱附(Py-TPD),N2-吸附脱附和程序升温氧化(TPO)等手段对催化剂反应前后的物性进行了表征,结果表明催化剂的表面酸性决定其催化乙醇脱水的性能.镍改性后,降低了催化剂的强酸量、增加了弱酸量,有利于乙醇转化率和乙烯选择性的提高,镍是比较合适的改性金属.以镍改性的HZSM-5为催化剂,对乙醇脱水制乙烯反应的工艺条件进行了优化.  相似文献   

5.
NKC-03A乙醇脱水制乙烯催化剂的活性位和失活规律的研究   总被引:7,自引:0,他引:7  
用TPD,IR,SEM,BET,ESR,MR和碳氢元素分析方法,研究了NKC-03A催化剂对乙醇脱水制乙烯反应的活性位和失活规律.新鲜催化剂表面存在B,B+L和L酸中心。反应约200小时后B酸消失,与此同时在波数为1385cm~(-1)处出现一个新的吸收峰,说明乙醇脱水的产物乙烯易在B酸中心上聚合。1385cm~(-1)峰与聚合物有关。脱水反应的主要活性位是中等强度的B酸。在醇脱水过程中,L酸可向B酸转化。催化剂的稳定性与B酸含量直接相关,因此,控制催化剂表面B酸含量对提高催化剂稳定性有着重要作用。  相似文献   

6.
乙烯是一种重要的大宗化工原料.目前国内外乙烯的生产方法主要是石脑油裂解法.但是,随着全球性石油资源供求关系日趋紧张,以及该生产过程存在较大环境污染,该工艺面临严峻挑战.生物乙醇是一种可以通过生物质发酵获得的可再生资源.因此,生物质乙醇催化脱水制乙烯工艺受到越来越多研究者关注.该技术的关键在于高性能乙醇脱水制乙烯催化剂的开发.研究发现, Si/Al比大于40的 Fe改性 ZSM-5分子筛在乙醇转换制碳氢化合物的催化反应中具有较高活性,当反应温度大于400oC时,可生成 C1-C9的烷烃、烯烃和芳香烃,其中以 C3产物和芳香烃产物为主.本文研究了 Si/Al比为25-300的 Fe离子交换 ZSM-5分子筛在乙醇脱水制乙烯反应中的催化活性,并利用 XRD, NH3-TPD,吡啶吸附 FT-IR和DRS UV-VIS等表征手段,研究了催化剂的晶相结构、表面组成及酸性位点等,进而探究了该催化反应的反应机理.我们首先考察了 Si/Al比为25-300的 HZSM-5分子筛.随着分子筛 Si/Al比增大,乙醇转化率先增加后降低,在 Si/Al比为100时获得最高值;但是乙烯收率随着 Si/Al比的增加而持续下降, Si/Al比为25时有其最高值47%.经产物分析, HZSM-5(25)和 HZSM-5(300)虽具有相似的乙醇转化率,但前者产生大量 C3+产物,而后者产物只有乙烯和乙醚.据文献报道,乙醚是乙醇脱水制乙烯的中间产物,它的进一步脱水产生乙烯,而乙烯可进一步转化生成 C3+产物.因此,由于 HZSM-5(300)表面酸性较弱,主要生成反应中间体,而 HZSM-5(25)较强的表面酸性又导致乙烯进一步转化,生成 C3+产物.然后我们考察了经过3次离子交换处理的 Fe-ZSM-5催化剂.随着 Si/Al比上升(25-300),乙醇转化率和乙烯收率下降, Si/Al比为25时为其最高值;随着反应温度上升,乙醇转化率在260oC时达到近100%,之后维持不变,乙烯收率也在260 oC时为其峰值,温度继续上升造成乙烯收率再次下降;催化剂空速增大降低乙醇转化率和乙烯收率.经产物分析,温度较低和空速较大时产生大量的反应中间体乙醚,而温度较高时导致乙烯进一步转化生成 C3+产物.在反应温度为260oC、空速为0.81 h-1时, Fe-HZSM-5(25)催化剂上乙醇转化率为98%-99%、乙烯收率为97%-99%,并可实现长达1440 h的单程使用寿命,该值是 HZSM-5(25)催化剂的20余倍,具有很好的工业应用前景.为探究 Fe-ZSM-5(25)催化剂高催化活性和长催化寿命的原因,我们表征了催化剂.从 XRD结果可以看出,离子交换没有损坏 HZSM-5的晶体结构,也没有新的可检测到的物相产生.从 NH3-TPD结果看, HZSM-5(25)的CH/CL(强酸/弱酸)比为0.7, Fe-ZSM-5(25)的CH/CL比为0.29,可知 Fe离子交换降低了分子筛的表面酸性,特别是强酸性位.从吡啶吸附 FT-IR结果看, HZSM-5(25)的 B/L (Br?nsted酸性位/Lewis酸性位)比为1.42, Fe-ZSM-5(25)的 B/L比为0.25,可知 Fe离子交换主要减少的是分子筛表面的 Br?nsted酸性位.文献报道,乙醇脱水制乙烯主要发生在弱酸性位上,而乙烯进一步转化为 C3+产物发生在强酸性位上.所以,催化剂上强酸性位的减少有利于乙烯的生成反应.另据文献报道, Br?nsted酸性位是乙烯聚合、迅速覆盖催化活性位点产生积炭的催化活性中心.因此, Br?nsted酸性的降低可认为是 Fe-HZSM-5(25)催化剂单程使用寿命长较 HZSM-5(25)分子筛显著延长的原因.从 UV-VIS结果得知, Fe-ZSM-5上的 Fe物种主要以骨架内和骨架外 Fe3+为主,此外含有少量低聚合的 FexOy,但几乎没有 Fe2O3颗粒存在.文献记载, Fe3+物种是乙烯形成的活性物种,而 FeOx催化产生乙烯和乙醛.因此,催化剂中大量骨架内和骨架外 Fe3+物种的存在也可认为是该催化剂具有较强乙醇脱水制乙烯催化活性的原因之一.  相似文献   

7.
乙烯是一种重要的大宗化工原料.目前国内外乙烯的生产方法主要是石脑油裂解法.但是,随着全球性石油资源供求关系日趋紧张,以及该生产过程存在较大环境污染,该工艺面临严峻挑战.生物乙醇是一种可以通过生物质发酵获得的可再生资源.因此,生物质乙醇催化脱水制乙烯工艺受到越来越多研究者关注.该技术的关键在于高性能乙醇脱水制乙烯催化剂的开发.研究发现,Si/Al比大于40的Fe改性ZSM-5分子筛在乙醇转换制碳氢化合物的催化反应中具有较高活性,当反应温度大于400 ℃时,可生成C_1-C_9的烷烃、烯烃和芳香烃,其中以C_3产物和芳香烃产物为主.本文研究了Si/Al比为25-300的Fe离子交换ZSM-5分子筛在乙醇脱水制乙烯反应中的催化活性,并利用XRD,NH_3-TPD,吡啶吸附FT-IR和DRS UV-VIS等表征手段,研究了催化剂的晶相结构、表面组成及酸性位点等,进而探究了该催化反应的反应机理.我们首先考察了Si/Al比为25-300的HZSM-5分子筛.随着分子筛Si/Al比增大,乙醇转化率先增加后降低,在Si/Al比为100时获得最高值;但是乙烯收率随着Si/Al比的增加而持续下降,Si/Al比为25时有其最高值47%.经产物分析,HZSM-5(25)和HZSM-5(300)虽具有相似的乙醇转化率,但前者产生大量C_(3+)产物,而后者产物只有乙烯和乙醚.据文献报道,乙醚是乙醇脱水制乙烯的中间产物,它的进一步脱水产生乙烯,而乙烯可进一步转化生成C_(3+)产物.因此,由于HZSM-5(300)表面酸性较弱,主要生成反应中间体,而HZSM-5(25)较强的表面酸性又导致乙烯进一步转化,生成C_(3+)产物.然后我们考察了经过3次离子交换处理的Fe-ZSM-5催化剂.随着Si/Al比上升(25-300),乙醇转化率和乙烯收率下降,Si/Al比为25时为其最高值;随着反应温度上升,乙醇转化率在260 ℃时达到近100%,之后维持不变,乙烯收率也在260℃时为其峰值,温度继续上升造成乙烯收率再次下降;催化剂空速增大降低乙醇转化率和乙烯收率.经产物分析,温度较低和空速较大时产生大量的反应中间体乙醚,而温度较高时导致乙烯进一步转化生成C_(3+)产物.在反应温度为260 ℃、空速为0.81 h~(-1)时,Fe-HZSM-5(25)催化剂上乙醇转化率为98%-99%、乙烯收率为97%-99%,并可实现长达1440 h的单程使用寿命,该值是HZSM-5(25)催化剂的20余倍,具有很好的工业应用前景.为探究Fe-ZSM-5(25)催化剂高催化活性和长催化寿命的原因,我们表征了催化剂.从XRD结果可以看出,离子交换没有损坏HZSM-5的晶体结构,也没有新的可检测到的物相产生.从NH3-TPD结果看,HZSM-5(25)的CH/CL(强酸/弱酸)比为0.7,Fe-ZSM-5(25)的CH/CL比为0.29,可知Fe离子交换降低了分子筛的表面酸性,特别是强酸性位.从吡啶吸附FT-IR结果看,HZSM-5(25)的B/L(Br?nsted酸性位/Lewis酸性位)比为1.42,Fe-ZSM-5(25)的B/L比为0.25,可知Fe离子交换主要减少的是分子筛表面的Br?nsted酸性位.文献报道,乙醇脱水制乙烯主要发生在弱酸性位上,而乙烯进一步转化为C_(3+)产物发生在强酸性位上.所以,催化剂上强酸性位的减少有利于乙烯的生成反应.另据文献报道,Br?nsted酸性位是乙烯聚合、迅速覆盖催化活性位点产生积炭的催化活性中心.因此,Br?nsted酸性的降低可认为是Fe-HZSM-5(25)催化剂单程使用寿命长较HZSM-5(25)分子筛显著延长的原因.从UV-VIS结果得知,Fe-ZSM-5上的Fe物种主要以骨架内和骨架外Fe~(3+)为主,此外含有少量低聚合的Fe_xO_y,但几乎没有Fe_2O_3颗粒存在.文献记载,Fe~(3+)物种是乙烯形成的活性物种,而FeO_x催化产生乙烯和乙醛.因此,催化剂中大量骨架内和骨架外Fe~(3+)物种的存在也可认为是该催化剂具有较强乙醇脱水制乙烯催化活性的原因之一.  相似文献   

8.
介孔材料负载杂多酸催化剂催化乙醇脱水制乙烯   总被引:1,自引:1,他引:1  
采用浸渍法以一种介孔分子筛为载体负载l2磷-钨酸,制得不同负载量的固体酸催化剂.通过X射线衍射、傅里叶红外、N2吸附-脱附、透射电镜等表征手段对载体和催化剂进行表征.此外,采用乙醇脱水制备乙烯的反应评价该系列催化剂的活性,结果表明:在相同的反应温度下,催化剂的反应活性随着负载杂多酸量的增加而增大;对于负载量相同的固体酸催化剂,乙醇的转化率和乙烯的产率随着反应温度的升高而增大.  相似文献   

9.
李晶晶  程美凤  肖荣 《化学教育》2020,41(23):96-99
设计装置简单、操作简便、安全性高、现象明显、高效高产的实验室脱水制乙烯实验。并以乙醇的用量、反应火候、乙醇与火焰的距离为变量,设计正交实验,在保障产率的同时,探究实验室脱水制乙烯新方案的最佳演示实验效果。  相似文献   

10.
在HZSM-5分子筛催化乙醇脱水反应中观察到了停料效应:即当停止乙醇-水进料一定时间,恢复进料后乙烯选择性明显提高。通过考察不同反应条件下的停料效应,发现乙醇质量分数控制在55%附近、延长停料时间、升高反应温度和降低乙醇进料空速会提高停料效应强度,并较长时间维持高乙烯选择性。500 h的催化剂稳定性测试表明,停料效应可有效延长催化剂的使用寿命。结合含水乙醇脱水反应机理和实验结果,推测HZSM-5催化乙醇脱水停料效应产生的原因是停料时乙氧基中间体的积累和催化活性空位的再生。  相似文献   

11.
The indicators of ethanol to ethylene catalytic dehydration process on trilobe- and ring-shaped samples of an alumina catalyst were compared at the fixed parameters: thermal agent temperature and catalyst load. Experiments were performed in a flow-through reactor of a laboratory setup and in a tubular reactor of a pilot installation. The use of the less active ring-shaped catalyst ensures higher values of ethanol conversion, ethylene yield, and catalyst performance and significantly lower hydraulic resistance, compared to the more active trilobe-shaped catalyst. This is caused by lower intensity of the heat absorption on the less active catalyst and, correspondingly, to the higher temperature in the ring bed due to higher bed porosity.  相似文献   

12.
Catalytic dehydration of ethanol using transition metal oxide catalysts   总被引:9,自引:0,他引:9  
The aim of this work is to study catalytic ethanol dehydration using different prepared catalysts, which include Fe(2)O(3), Mn(2)O(3), and calcined physical mixtures of both ferric and manganese oxides with alumina and/or silica gel. The physicochemical properties of these catalysts were investigated via X-ray powder diffraction (XRD), acidity measurement, and nitrogen adsorption-desorption at -196 degrees C. The catalytic activities of such catalysts were tested through conversion of ethanol at 200-500 degrees C using a catalytic flow system operated under atmospheric pressure. The results obtained indicated that the dehydration reaction on the catalyst relies on surface acidity, whereas the ethylene production selectivity depends on the catalyst chemical constituents.  相似文献   

13.
改性膨润土催化乙醇流化床脱水制乙烯   总被引:5,自引:0,他引:5  
以浸渍法制备的改性膨润土为催化剂,在自行设计的流化床装置上评价了乙醇脱水制乙烯的催化性能;采用X-射线衍射(XRD)、傅里叶变换红外(FT-IR)、扫描电镜(SEM)、比表面分析(BET)和热重分析(TG)等手段对催化剂的理化性能进行表征,同时考察了不同催化剂制备条件和催化反应条件等工艺因素对催化剂性能的影响。结果表明,当硫酸质量分数为44%,水洗至pH值为4~5,添加0.15g混合氯化稀土,反应温度为270℃,乙醇的进样流速为013mL/min,催化剂用量3g,催化反应的活性最佳,出口乙烯气体的体积分数可达8.56×10^-1。  相似文献   

14.
秸秆超(亚)临界水预处理与水解技术   总被引:5,自引:0,他引:5  
赵岩  王洪涛  陆文静  李冬 《化学进展》2007,19(11):1832-1838
秸秆的资源化特别是乙醇化技术由于其技术可行性和产物高值化受到了广泛关注。预处理与水解是乙醇化的关键过程。目前针对秸秆的转化已经开展了多种化学或生物技术的研究,其中超(亚)临界技术与传统技术相比显示了独特的优势,如更高的反应速率、不需催化剂、无产物抑制等。本文在总结秸秆传统预处理与水解技术的基础上,对秸秆超(亚)临界水预处理与水解的过程和机理,特别是超临界亚临界组合技术的研究现状、工艺及其相关研究的进展进行了综述和分析,并阐述了超临界亚临界组合技术首先在超临界水中打破纤维结构进行初级水解,再通过亚临界反应将初级水解产物低聚糖进一步水解为葡萄糖的基本原理。最后对超(亚)临界技术在秸秆资源化领域的研究和应用前景进行了展望。  相似文献   

15.
The mechanism of the reductive dehydration of ethanol (RDE) into C3+ alkanes over the commercial alumina—platinum catalyst AP-64 has been investigated. The catalyst pre-reduction time has an effect on the conversion of ethanol and on that of ethylene, a possible intermediate compound in the RDE reaction. Over the catalyst reduced for 12 h, ethanol turns into a C3-C12 alkane fraction and ethylene turns into a C3-C12 olefin fraction, whose yields are 39.0 and 31.4%, respectively. Energetic parameters of ethanol chemisorption and conversion on a Pt6Al4 cluster have been determined by the density functional theory method using the PRIRODA 13 program. Ethanol dehydration into ethylene proceeds via the successive breaking of C-H and C-O bonds, and the rate-determining step of the process depends on the atom (Pt or Al) to which the OH group of the alcohol is coordinated. Hydroxyl group transfer from the Pt atom to the nearest Al atom is energetically favorable here. It is hypothesized that the main role of the metal-containing cluster is donation of chemisorbed ethylene to the nearest acid sites, on which the ethylene oligomerizes into a C3-C10 hydrocarbon fraction.  相似文献   

16.
Fei Wang  Man Luo  Wende Xiao 《中国化学》2011,29(7):1326-1334
The catalytic performance and coking behavior of a submicron ZSM‐5 zeolite in dehydration of ethanol to ethylene were investigated by means of low temperature nitrogen adsorption, thermal gravimetric analysis, and nuclear magnetic resonance. The submicron catalyst showed higher activity than the micron one due to more mesopores and more strong acid sites. As the reaction temperature increased, ethanol conversion increased over the submicron catalyst, while ethylene selectivity went through a maximum. The selectivities of propylene and butylene increased with increasing reaction temperature, and they decreased with time on stream at constant temperature. The coke deposits can be divided into coke precursor and hard coke, which were attributed to polyalkylbenzene and polycyclic aromatic hydrocarbons, respectively; and increasing reaction temperature can accelerate the transformation of coke precursor into hard coke. A precoking pretreatment method was verified very effective for improving the catalyst stability.  相似文献   

17.
A combination of techniques have been used to characterise lyocell regenerated cellulose fibre subjected to low-moisture thermal-catalytic reactions with zinc chloride Lewis acid. Application from non-swelling ethanol reduces catalyst accessibility, but at high temperatures migration takes place through the internal fibre morphology. The extent of chain scission is reduced at lower temperatures, leading to a higher leveling-off degree of polymerisation (LODP). In contrast, application of zinc chloride from water results in a lower LODP, due to the more even distribution of catalyst. The weights of extractable polymer material increase according to two separate rate constants, following established semicrystalline models. A higher Arrhenius activation energy for chain scission is seen for zinc chloride application from ethanol, which may be due to the physical mobilisation of the cellulose polymer at high temperature, associated with a cellulose Tg. This may also aid recrystallisation. Cellulose dehydration endotherms and pyrolysis exotherms are shifted to lower temperature for application of zinc chloride from ethanol compared to water, which may be the result of a higher local concentration of catalyst and a faster reaction onset.  相似文献   

18.
With further development, membrane separations have the potential to contribute to process improvements, especially for energy conservation, in ethanol fuel production. Two applications of hyperfiltration (reverse osmosis) in the recovery and purification of ethanol from fermentation beer are defined and analyzed for energy requirements and economics. These analyses are performed for a complete plant, including a recovery subprocess with and without the use of hyperfiltration. The hyperfiltration processes are designed using existing data for available membranes and hypothetical data for advanced membranes. The overall purpose of these analyses is to identify process modifications and membrane-related research that can contribute to decreasing the energy requirements of ethanol fuel production.

In one application, hyperfiltration is used in a lignocellulose-to-ethanol plant to preconcentrate low-proof (2 wt% beer prior to further purification by fractional and azeotropic distillation. This application requires ethanol-rejecting membranes, which are developed. When lignocellulose is used as a feedstock for ethanol production, a low-proof beer is usually produced. The energy requirements of ethanol recovery from low-proof beer by conventional distillation exceed the energy content of ethanol and frequently preclude the feasibility of producing ethanol from lignocellulose. The use of hyperfiltration to preconcentrate ethanol can significantly reduce the energy requirements of ethanol recovery from low-proof beer. The analyses are based upon process designs using existing and hypothetical membranes. This application is found to conserve 19 to 20 GJ/m3 (67,000 to 72,000 Btu/gal) of anhydrous ethanol as compared to only fractional and azeotropic distillation and to be economically competitive (with a 2 to 4% lower price). The analysis indicates that this application of hyperfiltration is promising and that future research should be devoted to increasing flux (while maintaining or improving ethanol rejection) and to assessing and improving membrane life.

In the other application, hyperfiltration is used to dehydrate high-proof (93 to 95 wt%) ethanol in a corn-to-ethanol plant. Ethanol dehydration is an energy-intensive separation, generally requiring 2.0 to 2.8 GJ/m3 (7,000 to 10,000 Btu/gal) of anhydrous ethanol. This application was designed based upon hypothetical, water-rejecting hyperfiltration membranes, which are not pres ently developed. Although the hyperfiltration process is found to conserve 0.8 GJ/m3 (2,900 Btu/gal) of anhydrous ethanol, it is not found to have an economic advantage over a conventional ethanol purification process. Therefore, this application is not found to be promising and little incentive exists for performing research aimed at development of a water-rejecting membrane for the dehydration of ethanol by hyperfiltration.

Finally, thoughts regarding the use of membrane separations in the chemical/fuel industry are presented.  相似文献   


19.
Steam-reforming of ethanol for hydrogen production   总被引:1,自引:0,他引:1  
Production of hydrogen by steam-reforming of ethanol has been performed using different catalytic systems. The present review focuses on various catalyst systems used for this purpose. The activity of catalysts depends on several factors such as the nature of the active metal catalyst and the catalyst support, the precursor used, the method adopted for catalyst preparation, and the presence of promoters as well as reaction conditions like the water-to-ethanol molar ratio, temperature, and space velocity. Among the active metals used to date for hydrogen production from ethanol, promoted-Ni is found to be a suitable choice in terms of the activity of the resulting catalyst. Cu is the most commonly used promoter with nickel-based catalysts to overcome the inactivity of nickel in the water-gas shift reaction. γ-Al2O3 support has been preferred by many researchers because of its ability to withstand reaction conditions. However, γ-Al2O3, being acidic, possesses the disadvantage of favouring ethanol dehydration to ethylene which is considered to be a source of carbon deposit found on the catalyst. To overcome this difficulty and to obtain the long-term catalyst stability, basic oxide supports such as CeO2, MgO, La2O3, etc. are mixed with alumina which neutralises the acidic sites. Most of the catalysts which can provide higher ethanol conversion and hydrogen selectivity were prepared by a combination of impregnation method and sol-gel method. High temperature and high water-to-ethanol molar ratio are two important factors in increasing the ethanol conversion and hydrogen selectivity, whereas an increase in pressure can adversely affect hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号