首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Km,n is the complete bipartite graph with m and n vertices in its chromatic classes. G. Ringel has proved that the orientable genus of Km,n is equal to {(m ? 2)(n ? 2)4} if m ≥ 2 and n ≥ 2 and that its nonorientable genus is equal to {(m ? 2)(n ? 2)2} if m ≥ 3 and n ≥ 3. We give new proofs of these results.  相似文献   

3.
Let Km be the complete graph of order m. We prove that the cartesian sum Km+Kn can be decomposed into 12(m+n?2) hamiltonian cycles if m+n is even and into 12(m+n?3) hamiltonian cycles and a perfect matching if m+n is odd.  相似文献   

4.
The interval number of a graph G, denoted i(G), is the least positive integer t for which G is the intersection graph of a family of sets each of which is the union of at most t closed intervals of the real line R. Trotter and Harary showed that the interval number of the complete bipartite graph K(m,n) is ?(mn + 1)(m + n)?. Matthews showed that the interval number of the complete multipartite graph K(n1,n2,…,np) was the same as the interval number of K(n1,n2) when n1 = n2 = ? = np. Trotter and Hopkins showed that i(K(n1,n2,…,np)) ≤ 1 + i(K(n1,n2)) whenever p ≥ 2 and n1n2≥ ? ≥np. West showed that for each n ≥ 3, there exists a constant cn so that if pcn,n1 = n2?n ?1, and n2 = n3 = ? np = n, then i(K(n1,n2,…,np) = 1 + i(K(n1, n2)). In view of these results, it is natural to consider the problem of determining those pairs (n1,n2) with n1n2 so that i(K(n2,…,np)) = i(K(n1,n2)) whenever p ≥ 2 and n2n3 ≥ ? ≥ np. In this paper, we present constructions utilizing Eulerian circuits in directed graphs to show that the only exceptional pairs are (n2 ? n ? 1, n) for n ≥ 3 and (7,5).  相似文献   

5.
Some necessary conditions on a graph which has the same chromatic polynomial as the complete tripartite graph Km,n,r are developed. Using these, we obtain the chromatic equivalence classes for Km,n,n (where 1≤mn) and Km1,m2,m3 (where |mimj|≤3). In particular, it is shown that (i) Km,n,n (where 2≤mn) and (ii) Km1,m2,m3 (where |mimj|≤3, 2≤mi,i=1,2,3) are uniquely determined by their chromatic polynomials. The result (i), proved earlier by Liu et al. [R.Y. Liu, H.X. Zhao, C.Y. Ye, A complete solution to a conjecture on chromatic uniqueness of complete tripartite graphs, Discrete Math. 289 (2004) 175-179], answers a conjecture (raised in [G.L. Chia, B.H. Goh, K.M. Koh, The chromaticity of some families of complete tripartite graphs (In Honour of Prof. Roberto W. Frucht), Sci. Ser. A (1988) 27-37 (special issue)]) in the affirmative, while result (ii) extends a result of Zou [H.W. Zou, On the chromatic uniqueness of complete tripartite graphs Kn1,n2,n3 J. Systems Sci. Math. Sci. 20 (2000) 181-186].  相似文献   

6.
Let kn ? kn?1 ? … ? k1 be positive integers and let (ij) denote the coefficient of xi in Πr=1j (1 + x + x2 + … + xkr). For given integers l, m, where 1 ? l ? kn + kn?1 + … + k1 and 1 ? m ? (nn), it is shown that there exist unique integers m(l), m(l ? 1),…, m(t), satisfying certain conditions, for which m = (m(l)l + (m(l?1)l?1) + … + (m(t)t). Moreover, any m l-subsets of a multiset with ki elements of type i, i = 1, 2,…, n, will contain at least (m(l)l?1) + (m(l?1)l?2) + … + (m(t)t?1 different (l ? 1)-subsets. This result has been anticipated by Greene and Kleitman, but the formulation there is not completely correct. If k1 = 1, the numbers (ji) are binomial coefficients and the result is the Kruskal-Katona theorem.  相似文献   

7.
Let n and m be natural numbers, n ? m. The separation power of order n and degree m is the largest integer k = k(n, m) such that for every (0, 1)-matrix A of order n with constant linesums equal to m and any set of k 1's in A there exist (disjoint) permutation matrices P1,…, Pm such that A = P1 + … + Pm and each of the k 1's lies in a different Pi. Almost immediately we have 1 ? k(n, m) ? m ? 1, yet in all cases where the value of k(n, m) is actually known it equals m ? 1 (except under the somewhat trivial circumstances of k(n, m) = 1). This leads to a conjecture about the separation power, namely that k(n, m) = m ? 1 if m ? [n2] + 1. We obtain the bound k(n, m) ? m ? [n2] + 2, so that this conjecture holds for n ? 7. We then move on to latin squares, describing several equivalent formulations of the concept. After establishing a sufficient condition for the completion of a partial latin square in terms of the separation power, we can show that the Evans conjecture follows from this conjecture about the separation power. Finally the lower bound on k(n, m) allows us to show, after some calculations, that the Evans conjecture is true for orders n ? 11.  相似文献   

8.
With an ordinary differential expression L = ∑nk=0PkDk on an open interval I?r is associated a selfadjoint operator H in a Hilbert space, possibly beyond K=L2(l). The set DHK only depends on the generalized spectral family associated with H. It is shown that the (differentiated) eigenfunction expansion given by H converges uniformly on compact subintervals of l for functions in D(H)∩L In case H is a semibounded selfadjoint operator in K=L2T, a similar result is proved for functions in D|H|, which is the set of all KK for which there exists a sequence fn∈(H) such that fnf in H and (H(fn ? fm), fn ? fm → 0 as n, m → ∞.  相似文献   

9.
10.
Let T(R) denote the set of all tournaments with score vector R = (r1, r2,…, rn). R. A. Brualdi and Li Qiao (“Proceedings of the Silver Jubilee Conference in Combinatorics at Waterloo,” in press) conjectured that if R is strong with r1r2 ≤ … ≤ rn, then |T(R)| ≥ 2n?2 with equality if and only if R = (1, 1, 2,…, n ? 3, n ? 2, n ? 2). In this paper their conjecture is proved, and this result is used to establish a lower bound on the cardinality of T(R) for every R.  相似文献   

11.
In this paper we studied m×n arrays with row sums nr(n,m) and column sums mr(n,m) where (n,m) denotes the greatest common divisor of m and n. We were able to show that the function Hm,n(r), which enumerates m×n arrays with row sums and column sums nr(m,n) and mr(n,m) respectively, is a polynomial in r of degree (m?1)(n?1). We found simple formulas to evaluate these polynomials for negative values, ?r, and we show that certain small negative integers are roots of these polynomials. When we considered the generating function Gm,n(y) = Σr?0Hm,n(r)yr, it was found to be rational of degree less than zero. The denominator of Gm,n(y) is of the form (1?y)(m?1)(n?1)+3, and the coefficients of the numerator are non-negative integers which enjoy a certain symmetric relation.  相似文献   

12.
Berge's strong perfect-graph conjecture states that a graph is perfect iff it has neither C2n+1 nor C2n+1, n ≥ 2 as an induced subgraph. In this note we establish the validity of this conjecture for (K4?e)-free graphs.  相似文献   

13.
For 1 ≦ lj, let al = ?h=1q(l){alh + Mv: v = 0, 1, 2,…}, where j, M, q(l) and the alh are positive integers such that j > 1, al1 < … < alq(2)M, and let al = al ∪ {0}. Let p(n : B) be the number of partitions of n = (n1,…,nj) where, for 1 ≦ lj, the lth component of each part belongs to Bl and let p1(n : B) be the number of partitions of n into different parts where again the lth component of each part belongs to Bl. Asymptotic formulas are obtained for p(n : a), p1(n : a) where all but one nl tend to infinity much more rapidly than that nl, and asymptotic formulas are also obtained for p(n : a′), p1(n ; a′), where one nl tends to infinity much more rapidly than every other nl. These formulas contrast with those of a recent paper (Robertson and Spencer, Trans. Amer. Math. Soc., to appear) in which all the nl tend to infinity at approximately the same rate.  相似文献   

14.
For finite graphs F and G, let NF(G) denote the number of occurrences of F in G, i.e., the number of subgraphs of G which are isomorphic to F. If F and G are families of graphs, it is natural to ask then whether or not the quantities NF(G), FF, are linearly independent when G is restricted to G. For example, if F = {K1, K2} (where Kn denotes the complete graph on n vertices) and F is the family of all (finite) trees, then of course NK1(T) ? NK2(T) = 1 for all TF. Slightly less trivially, if F = {Sn: n = 1, 2, 3,…} (where Sn denotes the star on n edges) and G again is the family of all trees, then Σn=1(?1)n+1NSn(T)=1 for all TG. It is proved that such a linear dependence can never occur if F is finite, no FF has an isolated point, and G contains all trees. This result has important applications in recent work of L. Lovász and one of the authors (Graham and Lovász, to appear).  相似文献   

15.
A graph is called l-ply Hamiltonian if it admits l edge-disjoint Hamiltonian circuits. The following results are obtained: (1) When n ≥ 3 and 0 ≤ 2ln there exists an n-connected n-regular graph that is exactly l-ply Hamiltonian. (2) There exist 5-connected 5-regular planar graphs that are not doubly (i.e. 2-ply) Hamiltonian, one with only 132 vertices and another with only three types of face, namely 3-, 4- and 12-gons. (3) There exist 3-connected 5-regular planar graphs, one that is non-Hamiltonian and has only 76 vertices and another that has no Hamiltonian paths and has only 128 vertices. (4) There exist 5-edge-connected 5-regular planar graphs, one that is non-Hamiltonian and has only 176 vertices and another that has no Hamiltonian paths and has only 512 vertices. Result (1) was known in the special cases l = [n2] (an old result) and l = 0 (due to G. H. J. Meredith, 1973). The special case l = 1 provides a negative answer to question 4 in a recent paper by Joseph Zaks and implies Corollary 1 to Zaks' Theorem 1. Results (2) and (3) involve graphs with considerably fewer vertices (and, in one case, fewer types of face) than Zaks' corresponding graphs and provide partial answers to his questions 1 and 3. Result (4) involves graphs that satisfy a stronger condition than those of Zaks but still have fewer vertices.  相似文献   

16.
17.
Following a conjecture of P. Erdös, we show that if F is a family of k-subsets of and n-set no two of which intersect in exactly l elements then for k ? 2l + 2 and n sufficiently large |F| ? (k ? l ? 1n ? l ? 1) with equality holding if and only if F consists of all the k-sets containing a fixed (l + 1)-set. In general we show |F| ? dknmax;{;l,k ? l ? 1};, where dk is a constant depending only on k. These results are special cases of more general theorems (Theorem 2.1–2.3).  相似文献   

18.
The Ramsey Number r(G1, G2) is the least integer N such that for every graph G with N vertices, either G has the graph G1 as a subgraph or G, the complement of G, has the graph G2 as a subgraph.In this paper we embed the paths Pm in a much larger class T of trees and then show how some evaluations by T. D. Parsons of Ramsey numbers r(Pm, K1,n), where K1,n is the star of degree n, are also valid for r(Tm, K1,n) where TmT.  相似文献   

19.
The nonorientable genus of K4(n) is shown to satisfy:
γ(K4(n))=2(n?1)2 for n ? 3
,
γ(K4(2))=3, γ(K4(1))=1
.  相似文献   

20.
Let R = (r1,…, rm) and S = (s1,…, sn) be nonnegative integral vectors, and let U(R, S) denote the class of all m × n matrices of 0's and 1's having row sum vector R and column sum vector S. An invariant position of U(R, S) is a position whose entry is the same for all matrices in U(R, S). The interchange graph G(R, S) is the graph where the vertices are the matrices in U(R, S) and where two matrices are joined by an edge provided they differ by an interchange. We prove that when 1 ≤ rin ? 1 (i = 1,…, m) and 1 ≤ sjm ? 1 (j = 1,…, n), G(R, S) is prime if and only if U(R, S) has no invariant positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号