首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Non》2007,353(32-40):3425-3428
The formation of bulk metallic glasses (BMG) in the Cu-rich Cu–Zr–Ti ternary system is studied by using the ‘e/a-variant line criterion’. Three such lines, (Cu9Zr4)1−xTix, (Cu61.8Zr38.2)1−xTix and (Cu56Zr44)1−xTix, are defined in the Cu–Zr–Ti system by linking three binary compositions Cu9Zr4, Cu61.8Zr38.2 and Cu56Zr44 to the third element Ti. The binary compositions Cu9Zr4, Cu61.8Zr38.2 and Cu56Zr44 correspond to specific Cu–Zr binary clusters. BMGs are obtained by copper mould suction casting method with Ti contents of 7.5–15 at.%, 7.5–12.5 at.% and 5–12 at.%, respectively along the (Cu9Zr4)1−x Tix, (Cu61.8Zr38.2)1−xTix and (Cu56Zr44)1−xTix lines. The BMGs on each composition line manifest decreased thermal stabilities and glass forming abilities (GFAs) with increasing Ti contents. The maximum GFA appears at Cu64Zr28.5Ti7.5, with characteristic thermal parameters of Tg = 736 K, Tx = 769 K, Tg/Tl = 0.627 and γ = 0.403, which are all superior to those reported for the known Cu60Zr30Ti10 BMG.  相似文献   

2.
《Journal of Non》2007,353(32-40):3429-3433
The formation of amorphous and quasicrystalline phases in the Ti45Zr38Ni17 system both directly by mechanical alloying and after subsequent annealing was studied. The presence of amorphous, icosahedral quasicrystalline and the Ti2Ni-type with a fcc structure phases together with the initial metallic components was found in as-milled samples by X-ray diffraction. An increase of the milling time results in an increase of the amorphous phase content. Icosahedral quasicrystalline phases of Ti–Ni–Zr system were produced by mechanical alloying and subsequent annealing. Differential scanning calorimetry studies up to 520 °C showed an extended exothermal effect starting from 300 °C, which corresponds to the crystallization of the as-milled samples. The shape and size of the particles of the alloys were investigated by scanning electron microscopy and argon adsorption. The Specific area surface of the as-milled sample was rather small, in agreement with scanning electron microscopy data. The kinetics of the hydrogenation of the amorphous alloy Ti45Zr38Ni17 at different temperatures was studied.  相似文献   

3.
《Journal of Non》2007,353(11-12):1070-1077
The structural properties of xCr2O3–(40  x)Fe2O3–60P2O5, 0  x  10 (mol%) glasses have been investigated by Raman and Mössbauer spectroscopies, X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The Raman spectra show that the addition of up to 5.3 mol% Cr2O3 does not produce any changes in the glass structure, which consists predominantly of pyrophosphate, Q1, units. This is in accordance with O/P  3.5 for these glasses. The increase in glass density and Tg that occurs with increasing Cr2O3 suggests the strengthening of glass network. The Mössbauer spectra indicate that the Fe2+/Fetot ratio increases from 0.13 to 0.28 with increasing Cr2O3 content up to 5.3 mol%, which can be related to an increase in the melting temperature from 1423 to 1473 K. After annealing, the 10Cr2O3–30Fe2O3–60P2O5 (mol%) sample was partially crystallized and contained crystalline β-CrPO4 and Fe3(P2O7)2. The SEM and AFM micrographs of the partially crystallized sample revealed randomly distributed crystals embedded in a homogeneous glass matrix. EDS analysis indicated that the glass matrix was rich in Fe2O3 (39.6 mol%) and P2O5 (54.9 mol%), but contained only 5.5 mol% of Cr2O3. These results suggest that the maximum solubility of chromium in these iron phosphate melts is 5.5 mol% Cr2O3.  相似文献   

4.
《Journal of Non》2007,353(24-25):2479-2494
Tetrahedral iron (III) environments in alkali–alkaline earth–silica glasses have been studied as functions of alkali and alkaline earth cation type and Fe2O3 content using photoluminescence and optical absorption spectroscopies. The luminescence band centered at 13 000–15,500 cm−1 is attributed to the 4T1(G)  6A1(S) transition of tetrahedral Fe3+ ions. This band has Gaussian linewidths of 1500–3000 cm−1 but linewidths exhibit no clear compositional dependency. Ligand field strength, 10Dq, and the Racah parameters B and C are consistent with tetrahedral Fe3+ and here for the first time their linear variation with the alkali/alkaline earth ratio of ionic radii, cation field strengths or individual oxide basicities is demonstrated. This is attributed to the effects of near-neighbor cations on length and covalency of Fe3+–O bonds and on host glass structure. Alkali cations stabilize Fe3+ ions in tetrahedral coordination; stabilization increases linearly with increasing alkali ionic radius and therefore with decreasing alkali field strength. The role of alkaline earth cations in Fe3+ stabilization in these glasses is not clear, although their effect is the inverse of that of the alkalis. The structural behavior of Fe3+ is defined as selective, reflecting its strong local ordering effects.  相似文献   

5.
《Journal of Non》2005,351(49-51):3693-3698
Transparent crack-free and bubble-free Fe3+ doped SiO2 nanostructured gel-glasses were obtained by the sol–gel process. The process involves the hydrolysis and condensation of an appropriate molar ratio of tetraethoxysilane (TEOS), absolute ethanol, nitric acid and ferric nitrate, followed by stepwise annealing at temperatures ranging from 110 °C to 1000 °C. The structural variation of the gel-glasses and their influence on physical properties during annealing has been studied. It has been observed that monolithicity and chemical environment around Fe3+ in the gel-glasses are strongly dependent on the annealing temperatures. The colour of gel-glass samples is different for different annealing temperatures, mainly due to the different co-ordination state of Fe3+ and the generation of Fe2O3 colloids of size 20–60 nm in the silica matrix. The annealing process facilitates the tuning of the UV–visible transmission cut-off edge in high optical quality Fe3+ doped silica gel-glasses. A marked difference in the magnetic properties of these glasses is also observed with annealing temperatures.  相似文献   

6.
《Journal of Non》2005,351(46-48):3587-3592
In order to investigate the structural evolution around Al, pulse NMR experiments were carried out on 27Al in the Zr60Ni25Al15 metallic glass and the related crystalline compound, Zr6NiAl2. Different chemical shift peaks were observed around 2750 and 3000 ppm in the as-quenched Zr60Ni25Al15 and crystalline compound, Zr6NiAl2, respectively. Considering that the capped triangular prism of Zr9Al3 is formed around Al in the Zr6NiAl2 crystal, chemical correlation pairs of Al–Zr and/or Al–Al are fairly faint while that of Al–Ni may be dominant instead in the as-quenched state. These results suggest an inhomogenous chemical bonding nature in the Zr60Ni25Al15 metallic glass. The resonant peaks around 3000 ppm, which were distinctive in the Zr6NiAl2 crystal, appeared and became stronger upon crystallization through the relaxed state. Thus, drastic change in the local atomic configuration around Al was confirmed so as to form the unlike chemical correlation pairs of Al–Zr upon crystallization. The high glass-forming ability of the Zr60Ni25Al15 metallic glass should be attributed to the difficulties of significant atomic redistribution of the constituents around Al.  相似文献   

7.
《Journal of Non》2006,352(30-31):3326-3331
A series of tellurite glasses containing Fe2O3 with the nominal composition x(Fe2O3)–(1−x)(TeO2), where x = 0.05, 0.10, 0.15, and 0.20, have been synthesized and investigated using X-ray photoelectron spectroscopy (XPS) and magnetization techniques. The Te 3d core level spectra for all glass samples show symmetrical peaks at essentially the same binding energies as measured for TeO2 indicating that the chemical environment of the Te atoms in these glasses does not vary significantly with the addition of Fe2O3. Furthermore, the full-width at half-maximum (FWHM) of each peak does not vary with increasing Fe2O3 content which suggests that the Te ions exist in a single configuration, namely TeO4 trigonal bipyramid (tbp). The O 1s spectra are narrow and symmetric for all compositions such that oxygen atoms in the Te–O–Te, Fe–O–Fe and Te–O–Fe configurations must have similar binding energies. The analysis of the Fe 3p spectra indicates the presence of Fe3+ ions only, which is consistent with the valence state of the Fe ions determined from magnetic susceptibility measurements.  相似文献   

8.
Lithium yttrium silicate glasses mixed with different concentrations of Fe2O3 of the composition (40 ? x) Li2O–10Y2O3–50SiO2: x Fe2O3, with x = 0.3, 0.5, 0.8, 1.0, 1.2 and 1.5 (all in mol%) were synthesized. Electrical and dielectric properties including dielectric constant, ε′(ω), loss, tan δ, ac conductivity, σac, impedance spectra as well as electric moduli, M(ω), over a wide continuous frequency range of 40 Hz to 106 Hz and in the low temperature range 100 to 360 K were measured as a function of the concentration of Fe2O3. The dc conductivity is also evaluated in the temperature range 100 … 360 K. The temperature and frequency dispersions of dielectric constant as well as dielectric loss have been analyzed using space charge polarization model. The ac and dc conductivities have exhibited increasing trend with increasing Fe2O3 content beyond 0.5 mol%, whereas the activation energy for the conductivity demonstrated decreasing tendency in this dopant concentration range. Both quantum mechanical tunneling (QMT) and correlated barrier hopping models (CBH) were used for clarification of ac conductivity origin and the corresponding analysis has indicated that CBH model is more appropriate for this glass system. For the better understanding of relaxation dynamics of the electrical properties we have drawn the scaling plots for ac conductivity and also electric moduli. The plots indicated that the relaxation dynamics is independent on temperature but depends on concentration of Fe2O3. The dc conductivity is analyzed using small polaron hoping model. The increase of conductivity with the concentration of Fe2O3 beyond 0.5 mol% is explained in terms of variations in the redox ratio of iron ions in the glass network. The results were further analyzed quantitatively with the support of experimental data from IR, optical absorption and ESR spectral studies. The overall analysis has indicated that Li2O–Y2O3–SiO2 glasses containing more than 0.5 mol% of Fe2O3 are more suitable for achieving good electrical conductivity in these glasses.  相似文献   

9.
P. Gong  K.F. Yao  Y. Shao 《Journal of Non》2012,358(18-19):2620-2625
A series of lightweight Ti–Zr–Be–Al bulk metallic glasses (BMGs) have been developed through the addition of Al to Ti–Zr–Be ternary glassy alloy. By replacing Be with Al, the critical size of the glassy rod has been increased from 5 mm for Ti41Zr25Be34 alloy to 7 mm for Ti41Zr25Be29Al5 alloy, while the yield strength of Ti41Zr25Be34 ? xAlx (x = 2–10) has been greatly enhanced, resulting in a significant increase of the specific strength which is defined as yield strength/density. Among these newly developed Ti–Zr–Be–Al BMGs, Ti41Zr25Be26Al8 glassy alloy exhibits a high specific strength of 4.33 × 105 Nm/kg and a very large compressive plastic strain of 47.0%, which are much larger than those (3.69 × 105 Nm/kg and 2.9%, respectively) for Ti41Zr25Be34 glassy alloy. The present results show that Al is an effective alloying element for improving the glass-forming ability (GFA) and mechanical properties of Ti-Zr-Be glassy alloy.  相似文献   

10.
In earlier studies on phosphate and tellurite glasses containing vanadium and iron oxides, non-linear variation of physical properties as functions of the ratios of the transition ions (V/V + Fe) were observed. The most striking effect was observed with electrical conductivity, where a 3 orders of magnitude reduction in conductivity was observed at a V/V + Fe ratio of ~ 0.4. The effect was termed Mixed Transition-ion Effect or MTE. In phosphate glasses, however, MTE was not observed when one of the transition ions was manganese. It was concluded that Mn does not contribute to conduction in these glasses. In the present study, we demonstrate a mixed transition ion effect in tellurite glasses containing MnO and Fe2O3 (xFe2O3(0.2 ? x) MnO0.8TeO2 with x varying from 0 to 0.2). A maximum in the property at an intermediate composition (x = 8.5 mol%), was observed in DC resistivity, activation energy, molar volume etc. Mossbauer and optical absorption (UV–VIS–NIR) measurements were performed on these glasses and the transport mechanism has been identified to be hopping of small polarons between Fe3 + (Mn3 +) and Fe2 + (Mn2 +) sites.  相似文献   

11.
《Journal of Non》2007,353(32-40):3338-3341
A series of glass forming alloys (Ti33Zr33Hf33)100−xy(Ni50Cu50)xAly (x = 20–70 at.% and y = 0–30 at.%) have been developed by equiatomic substitution of similar elements. Of these alloys (Ti33Zr33Hf33)50(Ni50Cu50)40Al10 was chosen in this study to investigate the structural relaxation and glass transition behavior. The as-quenched (Ti33Zr33Hf33)50(Ni50Cu50)40Al10 alloy was fully amorphous and had a wide supercooled liquid region ΔT = Tx(503 °C)  Tg(433 °C) = 70 °C, where Tg and Tx are the glass transition and crystallization temperatures, respectively. Low temperature pre-heat treatments of the (Ti33Zr33Hf33)50(Ni50Cu50)40Al10 alloy for 10 min at 310 °C, 370 °C and 390 °C caused structural relaxation accompanied by the formation of very fine scale lattice ordering. After these heat treatments, the glass transition became hard to observe in the (Ti33Zr33Hf33)50(Ni50Cu50)40Al10 alloy. Increasing the pre-heat treatment temperatures and holding times caused the glass transition to become more clearly detectable with increasing endothermic heat release.  相似文献   

12.
《Journal of Non》2007,353(13-15):1354-1357
CuO-doped barium borophosphate glasses in a series of xCuO–(45  x)BaO–10B2O3–45P2O5 in molar ratio with x = 0–15 mol% were prepared by a melt-quenching technique. All the glasses had excellent thermal stability against crystallization. Glass transition temperature, thermal expansion coefficient and molar volume decrease with increasing CuO concentration. The linear relationship between the absorption coefficient and CuO concentration exists for a peak wavelength in the transitions of 2A1g  2B1g, 2B2g  2B1g, 2Eg  2B1g. The relationship between the properties and glass structure evaluated by Raman spectroscopy is discussed.  相似文献   

13.
The effects of the gradual substitution of Zr by Hf on glass formability and thermal stability in the Cu45Zr45?xHfxAg10 alloys and the effects of small additions of Si on glass formability in the Cu45Zr45Ag10 alloy are reported and discussed. The samples were prepared as ribbons of thickness in the range 25–200 μm by melt spinning and as conical bulk shapes, with a length of 50 mm and cone base diameters in the range 2–10 mm, by suction die casting. The alloy Cu45Zr45Ag10 had a critical cylindrical rod diameter for glass formation, dc, of 3.5 mm but substitution of 1.5 and 3.5 at.% Zr by Hf resulted in substantial increases to 5.5 and 4.5 mm, respectively. However, for x in the range 5–40 at.%, dc was reduced to <1 mm. The small addition of Si proved to be beneficial to the glass forming ability (GFA), increasing dc up to 5.5 mm for 0.5 at.% Si. Thus the chemical and atomic size similarities of Hf and Zr do not guarantee that bulk glass formation will be maintained on substituting large proportions of Zr by Hf though small substitutions of Hf and of minor additions of Si were beneficial to the GFA. These effects are discussed in terms of the possible influence of the alloying additions on the liquid structure and on the number density of heterogeneous nucleants.  相似文献   

14.
The glass forming ability and magnetic properties of Nd5Fe68 ? xB23Mo4Yx (x = 0, 2, 4, 6) alloys prepared by copper mold casting technique have been studied. Amorphous rods with a diameter of 2 mm were obtained in the Nd5Fe64B23Mo4Y4 alloy. After annealing for 10 min at 1013 K, the Nd5Fe64B23Mo4Y4 alloy showed optimal hard magnetic properties with the coercivity of 764.2 kA/m, remanence of 0.6 T and maximum energy product of 57.3 kJ/m3, respectively. The enhanced magnetic properties can be ascribed to the strong exchange coupling among the magnetically soft α-Fe (25–30 nm), Fe3B (30–35 nm) and hard Nd2Fe14B (40–50 nm) grains present in the magnet microstructure. Large size bulk nanocomposite magnets with sound magnetic properties make the Nd–Fe–B–Mo–Y alloy system a promising candidate for industrial applications.  相似文献   

15.
《Journal of Non》2005,351(40-42):3235-3245
The electrical and dielectrical properties of Bi2O3–Fe2O3–P2O5 glasses were measured by impedance spectroscopy in the frequency range from 0.01 Hz to 4 MHz and over the temperature range from 303 to 473 K. It was shown that the dc conductivity strongly depends on the Fe2O3 content and Fe(II)/Fetot ratio. With increasing Fe(II) ion content from 17% to 34% in the bismuth-free 39.4Fe2O3–59.6P2O5 and 9.8Bi2O3–31.7Fe2O3–58.5P2O5 glasses, the dc conductivity increases. On the other hand, the decrease in dc conductivity for the glasses with 18.9 mol% Bi2O3 is attributed to the decrease in Fe2O3 content from 31.7 to 23.5 mol%, which indicates that the conductivity for these glasses depends on Fe2O3 content. The conductivity for these glasses is independent of the Bi2O3 content and arises mainly from polaron hopping between Fe(II) and Fe(III) ions suggesting an electronic conduction. The evolution of the complex permittivity as a function of frequency and temperature was investigated. At low frequency the dispersion was investigated in terms of dielectric loss. The thermal activated relaxation mechanism dominates the observed relaxation behavior. The relationship between relaxation parameters and electrical conductivity indicates the electronic conductivity controlled by polaron hopping between iron ions. The Raman spectra show that the addition of up to 18.9 mol% of Bi2O3 does not produce any changes in the glass structure which consists predominantly of pyrophosphate units.  相似文献   

16.
《Journal of Non》2007,353(47-51):4395-4399
The electrical properties of (40−x)ZnO–xFe2O3–60P2O5 (x = 10, 20, 30 mol%) glasses were measured by impedance spectroscopy in the frequency from 0.01 Hz to 4 MHz and the temperature range from 303 to 473 K. It was shown that the dc conductivity strongly depends on the Fe2O3 content and Fe(II)/Fetot ratio. The increase in dc conductivity for these glasses is attributed to the increase in Fe2O3 content from 10 to 30 mol%. With increasing Fe(II) ion content from 6% to 17% the dc conductivity increases. This indicated that the conductivity arises mainly from polaron hopping between Fe(II) and Fe(III) ions suggesting an electron conduction in these glasses. By applying scaling on conductivity data measured at different temperatures, single master curve was obtained for each glass. On the other hand, deviation from the master curve at high frequencies was observed for glasses with different compositions. This deviation originates from a various mobility of charge carriers in different glass structures. Raman spectra showed the change of structure, from metaphosphate to pyrophosphate, with increasing Fe2O3 content from 10 to 30 mol%.  相似文献   

17.
《Journal of Non》2005,351(40-42):3246-3258
The effect of Fe2O3 content on electrical conductivity and glass stability against crystallization in the system PbO–Fe2O3–P2O5 has been investigated using Raman, XRD, Mössbauer and impedance spectroscopy. Glasses of the molar composition (43.3  x)PbO–(13.7 + x)Fe2O3–43P2O5 (0  x  30), were prepared by quenching melts in the air. With increasing Fe2O3 content and molar O/P ratio there is corresponding reduction in the length of phosphate units and an increase in the Fe(II) ion concentration, which causes a higher tendency for crystallization. Raman spectra of the glasses show that the interaction between Fe sites, which is essential for electron hopping, strongly depends on the cross-linking of the glass network. The electronic conduction of these glasses depends not only on the Fe(II)/Fetot ratio, but also on easy pathways for electron hopping in a non-disrupted pyrophosphate network. The Raman spectra of crystallized glasses indicate a much lower degree of cross-linking since more non-bridging oxygen atoms are present in the network. Despite the significant increase in the Fe2O3 content and Fe(II) ion concentration, there is a considerable weakening in the interactions between Fe sites in crystalline glasses. The impedance spectra reveal a decrease in conductivity, caused by poorly defined conduction pathways, which are result of the disruption and inhomogeneity of the crystalline phases that are formed during melting.  相似文献   

18.
Amorphous Al65Fe20Zr15 alloy has been prepared by mechanical alloying. The as-milled powders were analyzed by XRD and DTA. The fully amorphous alloy was identified by the hallo rings of XRD pattern. The effective activation energy of crystallization was estimated with modified Kissinger’s plot and it is 321.0 kJ/mol evaluated from the peak temperature of crystallization. The product phases of crystallization composed of Al3Zr, Al82Fe18, AlFeZr and an unidentified phase. The crystallization kinetics was also discussed by using the isochronal DTA scans and the values of corresponding kinetic parameters were determined.  相似文献   

19.
《Journal of Non》2007,353(24-25):2374-2382
Glass materials in the ZnO–Fe2O3–SiO2 system, containing zinc ferrite nanoparticles, were prepared by the sol–gel method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy, AC- and DC-magnetization techniques. The gel samples, dried at 130 °C, were further heat treated in air at 500 and 800 °C. At 500 °C zinc ferrite and hematite nanoparticles, with an average size of approximately 24 nm, were precipitated in the brown and opaque 10ZnO–10Fe2O3–80SiO2 and in the ruby colored transparent 5ZnO–5Fe2O3–90SiO2 and 2.5ZnO–2.5Fe2O3–95SiO2 glass matrices. In the 5ZnO–5Fe2O3–90SiO2 sample the nanoparticles exhibited ferro or ferrimagnetic interactions combined with superparamagnetism with a blocking temperature of approximately 14 K. Heating at 800 °C seems to cause partial dissolution of the zinc ferrite and hematite particles in all the investigated compositions. Accordingly at 800 °C the 5ZnO–5Fe2O3–90SiO2 glass shows a paramagnetic behavior down to 2 K.  相似文献   

20.
Structure and crystallization behavior of amorphous and quasicrystalline Ti45Zr35Ni17Cu3 alloy have been studied. DSC trace of the amorphous alloy obtained during continuous heating to 1300 K shows distinctly an exothermic peak and two endothermic peaks. The amorphous alloy has different structures depending on annealing temperature. The first exothermic reaction at low temperature region from 400 K to 900 K is due to the precipitation of an icosahedral quasicrystalline phase, and the second endothermic reaction at higher temperature region from 950 K to 990 K results from the transformation of the I-phase to C14 Laves and α-(Ti, Zr) phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号