首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The fracture behavior of a functionally graded layered structure (FGLS) with an interface crack under thermal loading is investigated. Considering new boundary conditions, it is assumed that interface crack is partly insulated, and the temperature drop across the crack surfaces is the result of the thermal resistance due to the heat conduction through the crack region. The problem is formulated in terms of a system of singular integral equations. Numerical results are presented to show the influence of the material nonhomogeneity parameters and the dimensionless thermal resistance on the thermal stress intensity factors (TSIFs).  相似文献   

2.
Summary The aim of this work is to investigate the thermal stress intensity factor of a functionally gradient half space with an edge crack under a steady heat flux. All material properties of the functionally gradient half space, except for the coefficient of linear thermal expansion, are exponentially dependent on the distance from the boundary of the plate. The coefficient of linear thermal expansion is assumed to be two-dimensionally dependent. The problem is reduced to a singular integral equation by using the Fourier transform. The thermal stress intensity factor versus the nonhomogeneous material parameters is calculated and represented in figures. The numerical results show that thermal stress intensity factor is dramatically decreased when the material nonhomogeneous parameters are appropriately selected.  相似文献   

3.
Three-dimensional analysis of a half plane crack in a transversely isotropic solid is performed. The crack is subjected to a pair of normal point loads moving in a direction perpendicular to the crack edge on its faces. Transform methods are used to reduce the boundary value problem to a single integral equation that can be solved by the Wiener-Hopf technique. The Cagniard-de Hoop method is employed to invert the transforms. An exact expression is derived for the mode I stress intensity factor as a function of time and position along the crack edge. Some features of the solution are discussed through numerical results. The project supported by the Guangdong Provincial Natural Science Foundation and the Science Foundation of Shantou University  相似文献   

4.
For arbitrary anisotropy in the linear manifold of singular solutions generating square-root singularities of the crack tip stress, a special basis is introduced that possesses the same properties as in the isotropic case and provides simple integral representations for the attributes of the energy fracture criterion, in particular, the conditions of crack deviation from a straight path. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 3, pp. 98–107, May–June, 2005.  相似文献   

5.
Kuang-Chong Wu   《Wave Motion》2004,40(4):359-372
The problem of a semi-infinite crack subjected to an incident stress wave in a general anisotropic elastic solid is considered. The plane wave impinges the crack at a general oblique angle and is of any of the three types propagating in that direction. A related problem of a semi-infinite crack loaded by a pair of concentrated forces moving along the crack surfaces is also considered. In contrast to the conventional approach by Laplace transforms, a Stroh-like formalism is employed to construct the solution directly in the time domain. The solution is shown to depend on a Wiener–Hopf factorization of a symmetric matrix. Closed-form solution of the stress intensity factors is derived. A remarkably simple expression for the energy release rate is obtained for normal incidence.  相似文献   

6.
In this paper, numerical solutions of singular integral equations are discussed in the analysis of axi-symmetric interface cracks under torsion and tension. The problems of a ring-shaped interface crack are formulated in terms of a system of singular integral equations on the basis of the body force method. In the numerical analysis, unknown body force densities are approximated by the products of the fundamental density functions and power series, where the fundamental densities are chosen to express a two-dimensional interface crack exactly. The accuracy of the present analysis is verified by comparing the present results with the results obtained by other researchers for the limiting cases of the geometries. The calculation shows that the present method gives rapidly converging numerical results for those problems as well as for ordinary crack problems in homogeneous material. The stress intensity factors of a ring-shaped interface crack are shown in tables and charts with varying the material combinations and also geometrical conditions.  相似文献   

7.
A numerical and experimental investigation for determining mixed-mode stress intensity factors, fracture toughness, and crack turning angle for BX-265 foam insulation material, used by NASA to insulate the external tank (ET) for the space shuttle, is presented. BX-265 foam is a type of spray-on foam insulation (SOFI), similar to the material used to insulate attics in residential construction. This cellular material is a good insulator and is very lightweight. Breakup of segments of this foam insulation on the shuttle ET impacting the shuttle thermal protection tiles during liftoff is believed to have caused the space shuttle Columbia failure during re-entry. NASA engineers are interested in understanding the processes that govern the breakup/fracture of this material from the shuttle ET. The foam is anisotropic in nature and the required stress and fracture mechanics analysis must include the effects of the direction dependence on material properties. Material testing at NASA Marshall Space Flight Center (MSFC) has indicated that the foam can be modeled as a transversely isotropic material. As a first step toward understanding the fracture mechanics of this material, we present a general theoretical and numerical framework for computing stress intensity factors (SIFs), under mixed-mode loading conditions, taking into account the material anisotropy. We present SIFs for middle tension – M(T) – test specimens, using 3D finite element stress analysis (ANSYS) and FRANC3D fracture analysis software. SIF values are presented for a range of foam material orientations. Mode I fracture toughness of the material is determined based on the SIF value at failure load. We also present crack turning angles for anisotropic foam material under mixed-mode loading. The results represent a quantitative basis for evaluating the strength and fracture properties of anisotropic foam insulation material.  相似文献   

8.
The antiplane shear deformation problem of two edge-bonded dissimilar isotropic wedges is considered. In the case when the sum of the two apex angles is equal to 2π, the problem reduces to that of two edge-bonded dissimilar materials with an interfacial crack subjected to concentrated antiplane shear tractions on the crack faces. An explicit expression is extracted for the stress intensity factor at the crack tip. In the special cases of different combinations of the apex angles, the obtained expression for the stress intensity factor may be simplified and relations of a simpler form are given for the stress intensity factor. It is shown that the stress intensity factor is dependent on the material properties as well as the geometry and loading. However, in special cases of equal apex angles as well as the case of similar materials the dependency of the stress intensity factor on the material properties disappears.  相似文献   

9.
Steady-state anisotropic thermoelasticity equations are used to obtain the stress intensity factors for a cracked layer sandwiched between two different anisotropic elastic solids. The anisotropy is assumed to arise from discrete fibers whose orientation could alter with reference to the crack edges. A generalized plane deformation prevails in the dissimilar media domain with a line of discontinuity disturbing a uniform heat flow. The flexibility/stiffness matrix approach is used such that the crack problem reduces to solving two sets of singular integral equations. Numerical values of the crack tip stress-intensity factors are obtained for various crack size, crack location, crack surface insulation, fiber volume fraction and orientation angles. The results are displayed graphically.  相似文献   

10.
This paper considers a frictionless receding contact problem between an anisotropic elastic layer and an anisotropic elastic half plane, when the two bodies are pressed together by means of a rigid circular stamp. The problem is reduced to a system of singular integral equations in which the contact stresses and lengths are the unknown functions. Numerical results for the contact stresses and the contact lengths are given by depending on various fibre orientations.  相似文献   

11.
This paper presents an exact closed-form solution for the Eshelby problem of a polygonal inclusion with graded eigenstrains in an anisotropic piezoelectric half plane with traction-free on its surface. Using the line-source Green’s function, the line integral is carried out analytically for the linear eigenstrain case, with the final expression involving only elementary functions. The solutions are applied to the semiconductor quantum wire (QWR) of square, triangular, and rectangular shapes, with results clearly illustrating various influencing factors on the induced fields. The exact closed-form solution should be useful to the analysis of nanoscale QWR structures where large strain and electric fields could be induced by the non-uniform misfit strain.  相似文献   

12.
The frictional contact interaction of the finite edges of a plane crack under the action of a normally incident harmonic shear wave that produces antiplane deformation is studied. The influence of the forces of contact interaction on the stress intensity factor is analyzed Published in Prikladnaya Mekhanika, Vol. 43, No. 9, pp. 115–119, September 2007.  相似文献   

13.
14.
15.
Linear elastic criterion of the inclined semi-elliptical crack growth direction is elaborated on the basis of the strain energy density theory. Stress and displacement fields are presented for higher order terms asymptotic expansion. Solutions for elastic stress intensity factors are accounting for the function describing of the crack tip fields near the free surface of plate. The mixed mode behavior of crack growth direction angle along the semi-elliptical crack front for different combination of biaxial loading, inclination crack angle and surface flaw geometry is determined.  相似文献   

16.
Static three-dimensional stress intensity factors of a semi-infinite plane crack are investigated in this paper. The deformations are caused by a pair of normal and tangential point forces acting on the crack faces but located away from the crack front. Cases of symmetric and anti-symmetric loadings with respect to the crack plane are both considered. Analytic solutions are obtained by the application of Fourier transforms together with the Wiener-Hopf technique. The formulation departs significantly from the Papkovich-Neuber formulation used in previous works. This alternative formulation reduces the complexity of the calculations involved and has the same potential in regard to the elastodynamic problem. Several misprints in previous works are also noted.  相似文献   

17.
求解混合型裂纹应力强度因子的围线积分法   总被引:5,自引:0,他引:5  
本文用复变函数理论推导出裂纹的辅助场,并用Betti功互等定理给出求解混合型裂纹应力强度因子的远场围绕积分法.此方法与积分路径的选择无关,用有限元法计算出远离裂纹尖端的位移场和应力场,就可通过计算绕裂端的围线积分,精确地给出混合型裂纹的应力强度因子KⅠ和KⅡ的数值解.  相似文献   

18.
Numerical solutions of singular integral equations are discussed in the analysis of a planar rectangular interfacial crack in three-dimensional bimaterials subjected to tension. The problem is formulated as a system of singular integral equations on the basis of the body force method. In the numerical analysis, unknown body force densities are approximated by the products of the fundamental density functions and power series, where the fundamental density functions are chosen to express singular behavior along the crack front of the interface crack exactly. The calculation shows that the present method gives smooth variations of stress intensity factors along the crack front for various aspect ratios. The present method gives rapidly converging numerical results and highly satisfied boundary conditions throughout the crack boundary. The stress intensity factors are given with varying the material combination and aspect ratio of the crack. It is found that the stress intensity factors KI and KII are determined by the bimaterial constant ε alone, independent of elastic modulus ratio and Poisson’s ratio.  相似文献   

19.
The application of analytical methods to the problem of fatigue crack propagation and branching is complicated by the shortage of information on the stress distribution near the tip of cracks of complex configuration. A discussion of this problem and a survey of the studies in this area can be found in [1], for example. Below we develop a method of solving a problem concerning a system of cracks of complex form in an anisotropic half-plane. An efficient algorithm for numerical solution of the problem is proposed. A study is made of the effect of anisotropy of the material, the free edge of the plate, and the curvature of the crack on the stress intensity factors at the tips of the cracks.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 124–128, November–December, 1986.  相似文献   

20.
This paper investigates transient stresses around a cylindrical crack in an infinite elastic medium subject to impact loads. Incoming stress waves resulting from the impact load impinge on the crack in a direction perpendicular to the crack axis. In the Laplace transform domain, by means of the Fourier transform technique, the mixed boundary value equations with respect to stresses and displacements were reduced to two sets of dual integral equations. To solve the equations, the differences in the crack surface displacements were expanded in a series of functions that are zero outside the crack. The boundary conditions for the crack were satisfied by means of the Schmidt method. Stress intensity factors were defined in the Laplace transform domain and were numerically inverted to physical space. Numerical calculations were carried out for the dynamic stress intensity factors corresponding to some typical shapes assumed for the cylindrical crack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号