首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, yet another iterative procedure, namely the minimal error method (MEM), for solving stably the Cauchy problem in linear elasticity is introduced and investigated. Furthermore, this method is compared with another two iterative algorithms, i.e. the conjugate gradient (CGM) and Landweber–Fridman methods (LFM), previously proposed by Marin et al. [Marin, L., Háo, D.N., Lesnic, D., 2002b. Conjugate gradient-boundary element method for the Cauchy problem in elasticity. Quarterly Journal of Mechanics and Applied Mathematics 55, 227–247] and Marin and Lesnic [Marin, L., Lesnic, D., 2005. Boundary element-Landweber method for the Cauchy problem in linear elasticity. IMA Journal of Applied Mathematics 18, 817–825], respectively, in the case of two-dimensional homogeneous isotropic linear elasticity. The inverse problem analysed in this paper is regularized by providing an efficient stopping criterion that ceases the iterative process in order to retrieve stable numerical solutions. The numerical implementation of the aforementioned iterative algorithms is realized by employing the boundary element method (BEM) for two-dimensional homogeneous isotropic linear elastic materials.  相似文献   

2.
Within the framework of the anisotropic theory of elasticity, a three-dimensional contact problem of interaction of two massive transversely isotropic bodies, whose dimensions substantially exceed the size of the contact region, is investigated. In this case, the isotropy planes of contacting elastic bodies are mutually perpendicular. Exact and numerical solutions of the problem are determined. Calculations for various transversely isotropic materials are carried out.  相似文献   

3.
This work deals with the Cauchy problem in two-dimensional linear elasticity. The equations of the problem are discretized through a standard FEM approach and the resulting ill-conditioned discrete problem is solved within the frame of the Tikhonov approach, the choice of the required regularization parameter is accomplished through the Generalized Cross Validation criterion. On this basis a numerical experimentation has been performed and the calculated solutions have been used to highlight the sensitivity to the amount of known data, the noise always present in the data, the regularity of boundary conditions and the choice of the regularization parameter. The aim of the numerical study is to implicitly device some guidelines to be used in the solution of this kind of problems.  相似文献   

4.
The theory of defects in Cosserat continua is sketched out in strict analogy to the theory of line defects in anisotropic elasticity (Stroh theory). This rewrite of the second order equilibrium equations of elasticity in a 3-dimensional space as first order equations in a 6-dimensional space is analogous to replacing the Laplace equation by the Riemann–Cauchy equations. For generalized plane strain of anisotropic micropolar (Cosserat) elasticity one obtains a 14-dimensional coupled linear system of differential equations of first order and for plane strain of anisotropic micropolar (Cosserat) elasticity we obtain a 6-dimensional coupled linear system of differential equations of first order.  相似文献   

5.
This paper considers the plane stress problem of generally anisotropic beams with elastic compliance parameters being arbitrary functions of the thickness coordinate. Firstly, the partial differential equation, which is satisfied by the Airy stress function for the plane problem of anisotropic functionally graded materials and involves the effect of body force, is derived. Secondly, a unified method is developed to obtain the stress function. The analytical expressions of axial force, bending moment, shear force and displacements are then deduced through integration. Thirdly, the stress function is employed to solve problems of anisotropic functionally graded plane beams, with the integral constants completely determined from boundary conditions. A series of elasticity solutions are thus obtained, including the solution for beams under tension and pure bending, the solution for cantilever beams subjected to shear force applied at the free end, the solution for cantilever beams or simply supported beams subjected to uniform load, the solution for fixed–fixed beams subjected to uniform load, and the one for beams subjected to body force, etc. These solutions can be easily degenerated into the elasticity solutions for homogeneous beams. Some of them are absolutely new to literature, and some coincide with the available solutions. It is also found that there are certain errors in several available solutions. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a functionally graded anisotropic cantilever beam.  相似文献   

6.
For materials characterized by a linear relation between Almansi strains and Cauchy stresses, relations between stresses and complex potentials are obtained and the plane static problem of the theory of elasticity is thus reduced to a boundary-value problem for the potentials. The resulting relations are nonlinear in the potentials; they generalize well-known Kolosov's formulas of linear elasticity. A condition under which the results of the linear theory of elasticity follow from the nonlinear theory considered is established. An approximate solution of the nonlinear problem for the potentials is obtained by the small-parameter method, which reduces the problem to a sequence of linear problems of the same type, in which the zeroth approximation corresponds to the problem of linear elasticity. The method is used to obtain both exact and approximate solutions for the problem of the extension of a plate with an elliptic hole. In these solutions, the behavior of stresses on the hole contour is illustrated by graphs. Novosibirsk State University, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 1, pp. 133–143, January–February, 2000.  相似文献   

7.
We investigate two numerical procedures for the Cauchy problem in linear elasticity, involving the relaxation of either the given boundary displacements (Dirichlet data) or the prescribed boundary tractions (Neumann data) on the over-specified boundary, in the alternating iterative algorithm of Kozlov et al. (1991). The two mixed direct (well-posed) problems associated with each iteration are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method, while the optimal value of the regularization parameter is chosen via the generalized cross-validation (GCV) criterion. An efficient regularizing stopping criterion which ceases the iterative procedure at the point where the accumulation of noise becomes dominant and the errors in predicting the exact solutions increase, is also presented. The MFS-based iterative algorithms with relaxation are tested for Cauchy problems for isotropic linear elastic materials in various geometries to confirm the numerical convergence, stability, accuracy and computational efficiency of the proposed method.  相似文献   

8.
In this paper we investigate spatial decay estimates and upper bounds for the solutions of elastic problems when the cross-sections of the three dimensional solid are semi-infinite strips. We obtain spatial decay estimates for the solutions of a static problem in the theories of homogeneous and isotropic linear elasticity and linearised elasticity. Energy bounds and some spatial decay estimates are obtained for the solutions of a dynamical problem in the case of anisotropic linear elasticity. For both kinds of problems we use the energy methods.  相似文献   

9.
We solve the bending problem for an anisotropic plate with flaws like smooth curved nonoverlapping through cracks and rigid inclusions. The problem is solved by the method of Lekhnitskii complex potentials specified as Cauchy type integrals over the flaw contours with an unknown integrand density function. We use the Sokhotskii—Plemelj formulas to reduce the boundary-value problem to a system of singular integral equations with the additional conditions that the displacements in the plate are single-valued when going around the cut contours and the equilibrium conditions for stress-free rigid inclusions. After the singular integrals are approximated by the Gauss-Chebyshev quadrature formulas, the problem is reduced to solving a system of linear algebraic equations. We study the local stress distribution near flaw tips. We analyze the mutual influence of flaws on the stress distribution character near their vertices and compare the well-known solutions for isotropic plates with the solutions obtained by passing to the limit in the anisotropy parameters (“weakly anisotropic material”) and by using the method proposed here.  相似文献   

10.
A mixed problem of linear elasticity for an infinite anisotropic plate with cuts and thin undeformable inclusions located along arbitrary open smooth curves is solved with the use of complex potentials. Special representations of the solutions are constructed and a governing system of singular integral equations is obtained. A numerical algorithm for determining the stress-strain state of the plate, including the stress-intensity factors at the tips of cuts and rigid inclusions, is proposed. Calculation results are given. Novosibirsk State Technical University, Novosibirsk 630092. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 3, pp. 213–219, May–June, 2000.  相似文献   

11.
The integrals in certain singular integral equations of the theory of elasticity are defined in the sense of the Cauchy principal value. The existence of the Cauchy principal value has been proved for the plane problem by numerous authors (see Muskhelishvili [1], [2]) and for the three-dimensional problem by Kupradze and co-workers [3]. The knowledge of the limiting values of the integrands at the test point is essential for the numerical treatment. In this paper it is shown that the limiting values of the integrands are essentially determined by the curvature of the surface of the elastic body and by the gradient of the solution of the integral equation. A special regard is payed to test points at which the curvature and the gradient are discontinuous.  相似文献   

12.
Abstract

In this paper we study the elasticity problem of a cylindrically anisotropic, elastic medium bounded by two axisymmetric cylindrical surfaces subjected to normal piessures (plane strain). The material of the structure is orthotropic with cylindrical anisotropy and, in addition, is continuously inhomogeneous with mechanical properties varying along the radius. General solutions in terms of Whittaker functions are presented. The results obtained by St. Venant for a homogeneous cylindrically anisotropic medium can be deduced from the general solutions. The problem of a solid cylinder of the same medium under the external pressure is also solved as a particular case of the above problem. Problems of the type covered in this paper are encountered in nuclear reactor design.  相似文献   

13.
In this paper, the interior transmission problem for the non absorbing, anisotropic and inhomogeneous elasticity is investigated. The direct scattering problem for the penetrable inhomogeneous, anisotropic and nondissipative scatterer is first studied and the existence and uniqueness of its solution are established. In the sequel, the interior transmission problem in its classical and weak form is presented and suitable variational formulations of it are settled. Finally, it is proved that the interior transmission eigenvalues constitute a discrete set. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The static boundary value problems of plane elasticity for an inhomogeneous anisotropic medium in a simply connected domain are reduced to the Riemann–Hilbert problem for a quasianalytic vector. Singular integral equations over the domain are obtained, and their solvability is proved for a sufficiently wide anisotropy class. In the case of a homogeneous anisotropic body, the solutions of the first and second boundary value problems are obtained in closed form.  相似文献   

15.
Multi-material wedges associated with convergence of geometrical and material discontinuity lines generally show singular stress fields around the vertex of the wedge. In this paper, the eigenvalue problem for a multi-material wedge composed of several anisotropic elastic sectors is formulated in a completely generally manner, including the cases of degenerate and extra-degenerate material sectors, and various types of edge conditions for both open and closed wedges. General representation of the elasticity solution in a degenerate or extra-degenerate anisotropic sector requires higher-order eigenmodes (generalized eigenfunctions) in addition to zeroth-order eigenmodes. Such higher-order eigenmodes are obtained from appropriate analytical expressions of the zeroth-order eigenmode by using the derivative rule. The analysis is applied to one bisector wedge and one trisector wedge in a three-layer cracked composite model to obtain accurate elasticity solutions of the singular stress fields. These solutions were determined using the traction data generated on a circular collocation path by a conventional finite element analysis.  相似文献   

16.
Symplectic approach has emerged a popular tool in dealing with elasticity problems especially for those with stress singularities. However, anisotropic material problem under polar coordinate system is still a bottleneck. This paper presents a subfield method coupled with the symplectic approach to study the anisotropic material under antiplane shear deformation. Anisotropic material around wedge tip is considered to be consisted of many subfields with constant material properties which can be handled by the symplectic approach individually. In this way, approximate solutions of the stress and displacement can be obtained. Numerical examples show that the present method is very accurate and efficient for such wedge problems. Besides, this paper has extended the application of the symplectic approach and provides a new idea for wedge problems of anisotropic material.  相似文献   

17.
The relations of the nonlinear model of the theory of elasticity are considered. The Cauchy and the strain gradient tensors are taken to be the characteristics of the stress-strain state of a body. Sufficient conditions under which the static equations of elasticity are of elliptic type are established. These conditions are expressed in the form of constraints imposed on the derivatives of the elastic potential with respect to the strain-measure characteristics. The cases of anisotropic and isotropic bodies are treated, including the case where the Almansi tensor is taken to be the strain measure. The plane strain of a body is investigated using actual-state variables. Novosibirsk State University, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 2, pp. 196–203, March–April, 1999.  相似文献   

18.
In this paper, large deformation problems for nonlinear elasticity are studied on the basis of hypoelastic theory. The expression of Cauchy elasticity is derived in the form of hypoclasticity. This makes it possible to solve large deformation for nonlinear elastic problems by the hypoelastic method. The variational principle of hypoclasticity and the Ritz method are used to obtain the numerical solution of a rectangular rubber membrane under uniaxial stretch.  相似文献   

19.
The Stroh formalism is a powerful and elegant mathematical method developed for the analysis of the equations of anisotropic elasticity. The purpose of this exposition is to introduce the essence of this formalism and demonstrate its effectiveness in both static and dynamic elasticity. The equations of elasticity are complicated, because they constitute a system and, particularly for the anisotropic cases, inherit many parameters from the elasticity tensor. The Stroh formalism reveals simple structures hidden in the equations of anisotropic elasticity and provides a systematic approach to these equations. This exposition is divided into three chapters. Chapter 1 gives a succinct introduction to the Stroh formalism so that the reader could grasp the essentials as quickly as possible. In Chapter 2 several important topics in static elasticity, which include fundamental solutions, piezoelectricity, and inverse boundary value problems, are studied on the basis of the Stroh formalism. Chapter 3 is devoted to Rayleigh waves, for long a topic of utmost importance in nondestructive evaluation, seismology, and materials science. There we discuss existence, uniqueness, phase velocity, polarization, and perturbation of Rayleigh waves through the Stroh formalism.

The Table of Contents and Index are also provided as Electronic Supplementary Material for online readers at doi:   相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号