首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Zn1−xMnxO thin films have been synthesized by chemical spray pyrolysis at different substrate temperatures in the range, 250–450 °C for a manganese composition, x = 15%, on corning 7059 glass substrates. The as-grown layers were characterized to evaluate their chemical and physical behaviour with substrate temperature. The change of dopant level in ZnO films with substrate temperature was analysed using X-ray photoelectron spectroscope measurements. The X-ray diffraction studies revealed that all the films were strongly oriented along the (0 0 2) orientation that correspond to the hexagonal wurtzite structure. The crystalline quality of the layers increased with the increase of substrate temperature up to 400 °C and decreased thereafter. The crystallite size of the films varied in the range, 14–24 nm. The surface morphological studies were carried out using atomic force microscope and the layers showed a lower surface roughness of 4.1 nm. The optical band gap of the films was ∼3.35 eV and the electrical resistivity was found to be high, ∼104 Ω cm. The films deposited at higher temperatures (>350 °C) showed ferromagnetic behaviour at 10 K.  相似文献   

2.
The penetration depth of electron in amorphous aluminum nitride (AlN) is determined in terms of energy loss per unit length using electron beam in a cathodoluminescence (CL) apparatus. Thin films bilayers of holmium doped aluminum nitride (AlN:Ho) and thulium doped aluminum nitride (AlN:Tm) are deposited on silicon substrates by rf magnetron sputtering method at liquid nitrogen temperatures. The bilayers structure consisted of a 37.8 nm thick AlN:Tm film on the top of a 15.3 nm thick AlN:Ho film. Electron beam of different energies are allowed to penetrate the AlN:Tm/AlN:Ho bilayers film. The spectroscopic properties of AlN:Ho and AlN:Tm, the thickness of the film and the energies of electron beam are used to calculate the penetration depth of electron in amorphous AlN. Electron beam of 2.5 keV energy was able to pass through the 37.8 nm thick AlN:Tm film. The electron penetration depth for AlN is found to be 661.4 MeV/cm.  相似文献   

3.
We report the growth, structural, magnetic, and electrical transport properties of epitaxial Sr2CrReO6 thin films. We have succeeded in depositing films with a high crystallinity and a relatively large cationic order in a narrow window of growth parameters. The epitaxy relationship is Sr2CrReO6 (SCRO) (0 0 1) [1 0 0]∥SrTiO3 (STO) (0 0 1) [1 1 0] as determined by high-resolution X-ray diffraction and scanning transmission electron microscopy (STEM). Typical values of saturation magnetization of MS (300 K)=1 μB/f.u. and ρ (300 K)=2.8  cm have been obtained in good agreement with previous published results in sputtered epitaxial thin films. We estimate that the antisite defects concentration in our thin films is of the order of 14%, and the measured Curie temperature is TC=481(2) K. We believe these materials be of interest as electrodes in spintronic devices.  相似文献   

4.
Al-doped zinc oxide (AZO) transparent conductive films were prepared on a glass substrate using a magnetron sputtering system with a pure zinc oxide (ZnO) target and a pure Al target sputtered using radio frequency (RF) power. The RF power was set at 100 W for the ZnO target and varied from 20 to 150 W for the Al target. The morphology of the thin films was examined by field-emission scanning electron microscope (FE-SEM), and their composition was analyzed by the equipped energy-dispersive X-ray spectroscopy (EDS). The cross section of the films determined through FE-SEM indicated that their thickness was around 650 nm. EDS analysis revealed that the Al-dopant concentration of the AZO films increased in the following order: 0.85 at.% (20 W) < 1.60 at.% (40 W) < 3.52 at.% (100 W) < 4.34 at.% (150 W). Analysis of the films using X-ray diffractometer (XRD) indicated that all films had a wurtzite structure with a texture of (0 0 2). High-resolution transmission electron microscopy (HRTEM) revealed a number of defects in the films, such as stacking faults and dislocations. Ultraviolet photoelectron spectroscopy (UPS) was used to estimate the optical energy gap (Eg) for the AZO thin films. The energy gap increases from 3.39 to 3.58 eV as the RF power applied to the Al target increase. The electrical resistivity of the films decreased from 3.43 × 10?2 Ω cm to 3.29 × 10?3 Ω cm as the RF power increased from 20 to 150 W when a four-point probe was used to investigate. Atomic force microscope (AFM) revealed that the surface roughness of the films increased with increasing RF power. The average optical transmittance of the films was determined by UV–visible spectrometer. The films are suitable for use as transparent conductive oxide films in the optoelectronic industry. A decrease in the electrical resistivity of the film with increasing Al-dopant concentration was ascribed to an increase in the carrier concentration and density of stacking faults in the films.  相似文献   

5.
Modified chemical bath deposited (MCBD) bismuth sulphide (Bi2S3) thin films’ structural, optical and electrical properties are engineered separately by annealing in air for 1 h at 300 °C and irradiating with 100 MeV Au swift heavy ions (SHI) at 5 × 1012 ions/cm2 fluence. It is observed that the band gap of the films gets red shifted after annealing and irradiation from pristine (as deposited) films. In addition, there is an increase in the grain size of the films due to both annealing and irradiation, leading to the decrease in resistivity and increase in thermoemf of the films. These results were explained in the light of thermal spike model.  相似文献   

6.
《Current Applied Physics》2010,10(2):386-390
Mo-doped In2O3 thin films have been prepared on glass substrates using an activated reactive evaporation method and systematically studied the effect of oxygen partial pressure on the structural, optical, electrical and photoluminescence properties of the films. The obtained films are highly transparent and conductive. The films exhibited the lowest electrical resistivity of 5.2 × 10−4 Ω cm, with an average optical transmittance of 90% in the visible region. An intensive photoluminescence emission peaks were observed at 415 and 440 nm.  相似文献   

7.
We report the results of a Surface X-Ray Diffraction (SXRD) study of Fe nanostructured films deposited on c(2 × 2)-N/Cu(100) at room temperature (RT), with Fe coverage ΘFe = 0.5 ML and ΘFe = 1 ML. The c(2 × 2)-N/Cu(100) surface is an example of self-organised system, that can be used for growth of arrays of metal nano-islands and organic molecules assemblies. We chose two different values of N coverage, ΘN = 0.3 ML and ΘN = 0.5 ML, the second value corresponding to N saturation. We monitored the presence of surface diffraction peaks in hk scans and we performed Crystal Truncation Rods (CTR) analysis with ROD fitting programme. In the case of ΘN = 0.5 ML, i.e. at saturation coverage, the CTR could be fitted with one surface domain with p4gm(2 × 2) symmetry. In the surface cell adopted, N atoms occupy four-fold hollow sites, with Fe (intermixed with Cu) giving rise to a “clock” reconstruction previously observed on iron nitride films obtained by co-deposition and annealing. This result is an indirect confirmation of N surface segregation on top of the Fe films, occurring during the growth at RT. When subsaturation N coverage (ΘN = 0.3 ML) is used as a substrate for Fe deposition, the best results could be obtained with a model where two surface domains are present: the first one corresponds to a surface cell with Fe sitting in four-fold hollow sites on bare Cu areas, with possible interdiffusion in the second lattice. The second domain is assigned to growth of Fe on the N-covered square islands occurring once the bare Cu areas are fully covered. The SXRD analysis on N-covered surface domains shows that the mechanism of reconstruction and of N segregation on top layer is already active at RT for all N-coverage values.  相似文献   

8.
We present experimental results obtained forRBa2Cu3O7  x(R = Y,Er) expitaxial thin films obtained through pulsed laser deposition (PLD) and grown on yttria stabilized zirconia (YSZ) and SrTiO3(STO) substrates. The films have been deposited by using low deposition rates (f = 4 Hz) and with control of the film surface temperature rather than that of the sample holder leading to a high quality of the epitaxy.  相似文献   

9.
Mixed Fe–Mo oxides are used in industrial catalytic processes of selective oxidation of methanol to formaldehyde. For better understanding of the structure-reactivity relationships of these catalysts we aim to prepare well-ordered iron–molybdate thin films as model catalysts. Here we have studied Mo deposition onto Fe3O4 (111) thin films produced on Pt(111) as a function of Mo coverage and annealing temperature using LEED, AES, STM and IRAS. At low temperatures, the iron oxide film is covered by Mo = O terminated molybdena nanoparticles. Upon oxidation at elevated temperatures (T > 900 K), Mo species migrate into the film and form new bonds with oxygen in the film. The resulting films maintain the crystal structure of Fe3O4, and the surface undergoes a (√3 × √3)R30° reconstruction. The structure is rationalized in terms of Fe substitution by Mo in the surface layers.  相似文献   

10.
We have studied the electrical and optical properties of Cu–Al–O films deposited on silicon and quartz substrates by using radio frequency (RF) magnetron sputtering method under varied oxygen partial pressure PO. The results indicate that PO plays a critical role in the final phase constitution and microstructure of the films, and thus affects the electrical resistivity and optical transmittance significantly. The electrical resistivity increases with the increase of PO from 2.4 × 10?4 mbar to 7.5 × 10?4 mbar and afterwards it decreases with further increasing PO up to 1.7 × 10?3 mbar. The optical transmittance in visible region increases with the increase of PO and obtains the maximum of 65% when PO is 1.7 × 10?3 mbar. The corresponding direct band gap is 3.45 eV.  相似文献   

11.
Various oxide films, such as SnO2, In2O3, Al2O3, SiO2, ZnO, and Sn-doped In2O3 (ITO) have been deposited on glass and polymer substrates by advanced ion beam technologies including ion-assisted deposition (IAD), hybrid ion beam, ion beam sputter deposition (IBSD), and ion-assisted reaction (IAR). Physical and chemical properties of the oxide films and adhesion between films and substrates were improved significantly by these technologies. By using the IAD method, non-stoichiometry, crystallinity, and microstructure of the films were controlled by changing assisted oxygen ion energy and arrival ratio of assisted oxygen ion to evaporated atoms. IBSD method has been carried out for understanding the growth mode of the films on glass and polymer substrate. Relationships between microstructure and electrical properties in ITO films on polymer and glass substrates were intensively investigated by changing ion energy, reactive gas environment, substrate temperature, etc. Smooth-surface ITO films (Rrms  1 nm and Rp−v  10 nm) for organic light-emitting diodes were developed with a combination of deposition conditions with controlling microstructure of a seed layer on glass. IAR surface treatment enormously enhanced the adhesion of oxide films to polymer substrate. In the case of Al2O3 and SiO2 films, the oxygen and moisture barrier properties were also improved by IAR surface treatment. The experimental results of the oxide films prepared by the ion beam technologies and its applications will be represented in detail.  相似文献   

12.
This paper discusses several structural, electrical and oxidation characteristics of co-sputtered Ta–Ru alloy films on oxidized Si-substrates. From X-ray examination, the Ta1Ru1 phase has formed and dominates in the compositions exceeding 54 at.% Ru content. The resistivity of the Ta–Ru thin films can reach a maximum of ∼320 μΩ cm in the composition range between 35 and 54 at.% Ru. After thermal treatment in air (600°C, 1 h), Ru-rich samples show a less increase in resistivity than Ta-rich ones. The observed preferential oxidation of Ta in the Ta–Ru samples can be further interpreted by thermodynamic calculations. The Ta-rich surface oxide is believed to be responsible for the passivating ability of the Ru atom toward oxidation at high temperatures. This results in the Ru of the metallic state though the oxidation of Ta occurs.  相似文献   

13.
Sputtered deposited thin films of AlN:Pr and GaN:Pr emit in ultraviolet–visible and visible regions of the spectrum, respectively, under electron excitation in cathodoluminescence apparatus. The goal is to study the ultraviolet emission from Pr+3 when doped in nitride semiconductor hosts. Luminescence peaks at a wavelength of 295 nm (4.2 eV), 335 nm (3.7 eV) and 385 nm (3.24 eV) are observed as a result from 1S0  1G4, 1S0  1D2 and 1S0  1I6 transitions, respectively. However the 1S0  1G4 and 1S0  1D2 transitions are not observed when Pr+3 is doped in GaN host. The bandgap of GaN absorbs the ultraviolet radiation emitted from Pr+3 and hence GaN can be used as ultraviolet filter for radiation shielding and protection purposes. AlN is transparent to ultraviolet due to its wide bandgap of 6.2 eV.  相似文献   

14.
A new approach of chemical bath deposition (CBD) of SnO2 thin films is reported. Films with a 0.2 μm thickness are obtained using the multi-dip deposition approach with a deposition time as little as 8–10 min for each dip. The possibility of fabricating a transparent conducting oxide layer of Cd2SnO4 thin films using CBD is investigated through successive layer deposition of CBD-SnO2 and CBD-CdO films, followed by annealing at different temperatures. High quality films with transmittance exceeding 80% in the visible region are obtained. Annealed CBD-SnO2 films are orthorhombic, highly stoichiometric, strongly adhesive, and transparent with an optical band gap of ~4.42 eV. Cd2SnO4 films with a band gap as high as 3.08 eV; a carrier density as high as 1.7 × 1020 cm?3; and a resistivity as low as 1.01 × 10?2 Ω cm are achieved.  相似文献   

15.
In this work, the pulsed electron beam deposition method (PED) is evaluated by studying the properties of ZnO thin films grown on c-cut sapphire substrates. The film composition, structure and surface morphology were investigated by means of Rutherford backscattering spectrometry, X-ray diffraction and atomic force microscopy. Optical absorption, resistivity and Hall effect measurements were performed in order to obtain the optical and electronic properties of the ZnO films. By a fine tuning of the deposition conditions, smooth, dense, stoichiometric and textured hexagonal ZnO films were epitaxially grown on (0001) sapphire at 700 °C with a 30° rotation of the ZnO basal plane with respect to the sapphire substrate. The average transmittance of the films reaches 90% in the visible range with an optical band gap of 3.28 eV. Electrical characterization reveals a high density of charge carrier of 3.4 × 1019 cm?3 along with a mobility of 11.53 cm²/Vs. The electrical and optical properties are discussed and compared to ZnO thin films prepared by the similar and most well-known pulsed laser deposition method.  相似文献   

16.
The growth of ultrathin films of Y2O3(111) on Pt(111) has been studied using scanning tunneling microscopy (STM), X-ray photoemission spectroscopy (XPS), and low energy electron diffraction (LEED). The films were grown by physical vapor deposition of yttrium in a 10? 6 Torr oxygen atmosphere. Continuous Y2O3(111) films were obtained by post-growth annealing at 700 °C. LEED and STM indicate an ordered film with a bulk-truncated Y2O3(111)–1 × 1 structure exposed. Furthermore, despite the lattices of the substrate and the oxide film being incommensurate, the two lattices exhibit a strict in-plane orientation relationship with the [11?0] directions of the two cubic lattices aligning parallel to each other. XPS measurements suggest hydroxyls to be easily formed at the Y2O3 surface at room temperature even under ultra high vacuum conditions. The hydrogen desorbs from the yttria surface above ~ 200 °C.  相似文献   

17.
《Ultrasonics》2014,54(6):1504-1508
We describe the fabrication and frequency characterization of different structures intended for the lateral excitation of shear modes in AlN c-axis-oriented films. AlN films are deposited on moderately doped silicon substrates covered either with partially metallic or fully insulating Bragg mirrors, and on insulating glass plates covered with insulating acoustic reflectors. TiOx seed layers are used to promote the growth of highly c-axis oriented AlN films, which is confirmed by XRD and SAW measurements. The excitation of the resonant modes is achieved through coplanar Mo electrodes of different geometries defined on top of the AlN films. All the structures analyzed display a clear longitudinal mode travelling at 11,000 m/s, whose excitation is attributed to the direction of the electric field (parallel to the c-axis) below the electrodes; this is enhanced when a conductive plane (metallic layer or Si substrate) is present under the piezoelectric layer. Conversely, only a weak shear resonance (6,350 m/s) is stimulated through the effect of coplanar electrodes, which is explained by the weakness of the electric field strength parallel to the surface between the electrodes. A significantly more effective excitation of shear modes can be achieved by normal excitation of AlN films with tilted c-axis.  相似文献   

18.
In this paper, boron-doped nanocrystalline Si0.78Ge0.22:H thin film is assessed for use as resistive sensing layer in uncooled infrared bolometer applications. The silicon germanium thin films were deposited by PECVD (plasma enhanced chemical vapor deposition) through decomposition of silane, germane and diborane diluted with argon at substrate temperature of 230 °C. Under optimum deposition parameters, the sensing films with modulate electrical resistivity (<104 Ω cm) and high temperature coefficient of resistance (TCR) (>−3%/K) were obtained at room temperature. 1/f noise character in the form of the normalized Hooge parameter was measured in the frequency range of 1–64 Hz, resulting in a lower 1/f noise compared to other materials currently used for device application.  相似文献   

19.
Large-area YBa2Cu3O7?x (YBCO) films had been successfully fabricated on LaAlO3 (LAO) substrate by metalorganic deposition using trifluoroacetates (TFA-MOD) and the effect of air humidity on the structure and properties of YBCO films was systematically investigated. The precursor coating process was performed in the air humidity range of 70–40%. According to the X-ray diffraction (XRD) and scanning electron microscopy (SEM) images, the films prepared at high air humidity showed poor electrical performance due to large pores and impurity phases. In contrast, dense, homogeneous and epitaxially grown YBCO films prepared at low air humidity with the critical current densities of 3.8–5.0 MA cm?2 at 77 K had been obtained.  相似文献   

20.
《Current Applied Physics》2010,10(6):1372-1377
Thin bismuth oxide films have been prepared by a modified Pechini route on glass substrate and annealed at temperatures ranging between 400 °C and 700 °C using bismuth nitrate as raw material. The thin films were then characterized for structural, surface morphological, optical and electrical properties by means of X-ray diffraction (XRD), Atomic force microscopy (AFM), scanning electron microscopy (SEM), optical absorption and d.c. two-probe, respectively. Structural investigations indicated that as-prepared bismuth oxide films were polycrystalline and multiphase, and annealing temperatures played a key role in the composition and optical properties of these films. AFM and SEM images revealed well defined particles which are highly influenced by annealing temperatures. The optical studies showed a direct band gap which varied with annealing temperatures between 3.63 eV and 3.74 eV. The electrical measurement showed that the electrical resistivity increased with annealing temperatures and the films were typical semiconductors. As catalyst, bismuth oxide films annealed at 550 °C had the best photocatalytic performance for photodegradation of methyl orange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号