首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studying of materials with evolving random microstructures requires the knowledge of probabilistic characteristics of local fields because the path of the microstructure evolution is controlled by the local fields. The probabilistic characteristics of local fields are determined by the probabilistic characteristics of material properties. In this paper it is considered the problem of finding the probabilistic characteristic of local fields, if the probabilistic characteristics of material properties are given. The probabilistic characteristics of local fields are sought from the variational principle for probabilistic measure. Minimizers of this variational problem provide all statistical information of local fields as well as the effective coefficients. Approximate solutions are obtained for electric current in composites for two cases: multi-phase isotropic composites with lognormal distribution of conductivities and two-phase isotropic composites. The solutions contain a lot of statistical information that has not been available previously by analytical treatments.  相似文献   

2.
Microstructures possessing local spherical anisotropy are considered in this paper. An example is a spherulitic polymer which can be modelled by an assemblage of spheres of all sizes in which a radial direction in every sphere is an axis of local transverse isotropy. Our purpose is to construct effectively isotropic microstructures, with spherically anisotropic and thermoelastic constituents, whose effective bulk modulus, thermal stress and specific heat can be exactly determined. The basic microstructure for which this is achieved in the present paper is the nested composite sphere assemblage of Milgrom and Shtrikman (J. Appl. Phys. 66 (1989) 3429) which was originally formulated for isotropic constituents, in the settings of conductivity and coupled fields with scalar potentials. Here, we allow the phases of this microstructure to be spherically thermoelastic with a symmetry class which can be trigonal, tetragonal, transversely isotropic, cubic or isotropic with respect to a local spherical coordinate system. A rich class of new exact results for two-phase composites and polycrystals are obtained.  相似文献   

3.
In the analysis of materials with random heterogeneous microstructure the assumption is often made that material behavior can be represented by homogenized or effective properties. While this assumption yields accurate results for the bulk behavior of composite materials, it ignores the effects of the random microstructure. The spatial variations in these microstructures can focus, initiate and propagate localized non-linear behavior, subsequent damage and failure. In previous work a computational method, moving window micromechanics (MW), was used to capture microstructural detail and characterize the variability of the local and global elastic response. Digital images of material microstructure described the microstructure and a local micromechanical analysis was used to generate spatially varying material property fields. The strengths of this approach are that the material property fields can be consistently developed from digital images of real microstructures, they are easy to import into finite element models (FE) using regular grids, and their statistical characterizations can provide the basis for simulations further characterizing stochastic response. In this work, the moving window micromechanics technique was used to generate material property fields characterizing the non-linear behavior of random materials under plastic yielding; specifically yield stress and hardening slope, post yield. The complete set of material property fields were input into FE models of uniaxial loading. Global stress strain curves from the FE–MW model were compared to a more traditional micromechanics model, the generalized method of cells. Local plastic strain and local stress fields were produced which correlate well to the microstructure. The FE–MW method qualitatively captures the inelastic behavior, based on a non-linear flow rule, of the sample continuous fiber composites in transverse uniaxial loading.  相似文献   

4.
The present study is concerned with a numerical prediction and assessment of uncertainties in the macroscopic material properties of solid foams. The material properties are determined by means of a homogenization analysis considering a large scale representative volume element. The microstructure for the representative volume element is determined randomly using a Voronoï tesselation in Laguerre geometry with prescribed cell size distribution. For assessment of the scatter in the effective material response, the homogenization scheme is applied to subsets of the large scale representative volume element. By this means, an interrelation between the local microstructural characteristics and the local mesoscopic material response is established. In a first approach, the individual cells of the foam microstructure are employed as testing volume elements. As an alternative, a moving window technique is applied. The sets of homogenization results obtained by both approaches are evaluated by stochastic methods. For the local effective properties, a distinct scatter is observed. The results in both cases reveal that the local porosity is the most important influence parameter. For the microstructures investigated, only weak local correlations of the effective stiffnesses with a rapid spatial decay of the correlation is observed.  相似文献   

5.
多相材料微结构多目标拓扑优化设计   总被引:5,自引:3,他引:5  
孙士平  张卫红 《力学学报》2006,38(5):633-638
在采用多尺度均匀化方法求解微结构等效特性的基础上,提出了多相材料 微结构的多目标优化设计模型. 以组分材料用量为约束,采用周长控制消除棋盘格,结合有 限元方法和对偶凸规划求解技术,对两相和三相材料微结构多项等效模量的组合进行了优化 设计. 研究比较了微结构网格粗细、材料组分以及三相材料微结构优化中的两相实体材料弹 性模量相对比例不同对优化结果的影响. 数值算例验证了优化模型和优化算法的有效性,表 明了相关因素对优化结果的影响.  相似文献   

6.
A comparative study has been carried out to assess the accuracy of the Digital Image Correlation (DIC) technique for the quantification of large strains in the microstructure of an Interstitial Free (IF) steel used in automotive applications. A microgrid technique has been used in this study in order to validate independently the strain measurements obtained with DIC. Microgrids with a pitch of 5 microns were printed on the etched microstructure of the IF steel to measure the local in-plane strain distribution during a tensile test carried out in a Scanning Electron Microscope (SEM). The progressive deformation of the microstructure with microgrids has been recorded throughout the test as a sequence of micrographs and subsequently processed using DIC to quantify the distribution of local strain values. Strain maps obtained with the two techniques have been compared in order to assess the accuracy of the DIC measurements obtained using the natural patterns of the revealed microstructure in the SEM micrographs. The results obtained with the two techniques are qualitatively similar and thus, demonstrate the reliability of DIC applied to microstructures, even after large deformations in excess of 0.7. However, an average error of about 16?% was found in the strain values calculated using DIC.  相似文献   

7.
The elastic energy of a multiphase solid is a function of its microstructure. Determining the infimum of the energy of such a solid and characterizing the associated optimal microstructures is an important problem that arises in the modeling of the shape memory effect, microstructure evolution, and optimal design. Mathematically, the problem is to determine the relaxation under fixed phase fraction of a multiwell energy. This paper addresses two such problems in the geometrically linear setting. First, in two dimensions, we compute the relaxation under fixed phase fraction for a two-well elastic energy with arbitrary elastic moduli and transformation strains, and provide a characterization of the optimal microstructures and the associated strain. Second, in three dimensions, we compute the relaxation under fixed phase fraction for a two-well elastic energy when either (1) both elastic moduli are isotropic, or (2) the elastic moduli are well ordered and the smaller elastic modulus is isotropic. In both cases we impose no restrictions on the transformation strains. We provide a characterization of the optimal microstructures and the associated strain. We also compute a lower bound that is optimal except possibly in one regime when either (1) both elastic moduli are cubic, or (2) the elastic moduli are well ordered and the smaller elastic modulus is cubic; for moduli with arbitrary symmetry we obtain a lower bound that is sometimes optimal. In all these cases we impose no restrictions on the transformation strains and whenever the bound is optimal we provide a characterization of the optimal microstructures and the associated strain. In both two and three dimensions the quasiconvex envelope of the energy can be obtained by minimizing over the phase fraction. We also characterize optimal microstructures under applied stress.  相似文献   

8.
The effective elastic behavior of a transversely isotropic composite made from two incompressible elastic materials is examined. The set of all effective elasticity tensors for transversely isotropic finite rank laminar microstructures is described. The extremal property of this class of microstructures is used to derive a new more precise characterization of the set of effective shear moduli.The perturbation series for the effective elasticity tensor is considered. An explicit formula for the second order perturbation tensor is derived. We describe precisely the set of tensors that correspond to all second order perturbations consistent with transverse isotropy. We apply analytic methods [cf. 27] to show that all second order perturbation tensors are realized by finite rank laminar microstructures.Supported by NSF through Grant DMS-3907658.  相似文献   

9.
A statistical continuum mechanics formulation is presented to predict the inelastic behavior of a medium consisting of two isotropic phases. The phase distribution and morphology are represented by a two-point probability function. The isotropic behavior of the single phase medium is represented by a power law relationship between the strain rate and the resolved local shear stress. It is assumed that the elastic contribution to deformation is negligible. A Green’s function solution to the equations of stress equilibrium is used to obtain the constitutive law for the heterogeneous medium. This relationship links the local velocity gradient to the macroscopic velocity gradient and local viscoplastic modulus. The statistical continuum theory is introduced into the localization relation to obtain a closed form solution. Using a Taylor series expansion an approximate solution is obtained and compared to the Taylor’s upper-bound for the inelastic effective modulus. The model is applied for the two classical cases of spherical and unidirectional discontinuous fiber-reinforced two-phase media with varying size and orientation.  相似文献   

10.
Maxwell’s concept of an equivalent inhomogeneity is employed for evaluating the effective elastic properties of tetragonal, fiber-reinforced, unidirectional composites with isotropic phases. The microstructure induced anisotropic effective elastic properties of the material are obtained by comparing the far-field solutions for the problem of a finite cluster of isotropic, circular cylindrical fibers embedded in an infinite isotropic matrix with that for the problem of a single, tetragonal, circular cylindrical equivalent inhomogeneity embedded in the same isotropic matrix. The former solutions precisely account for the interactions between all fibers in the cluster and for their geometrical arrangement. The solutions to several example problems that involve periodic (square arrays) composites demonstrate that the approach adequately captures microstructure induced anisotropy of the materials and provides reasonably accurate estimates of their effective elastic properties.  相似文献   

11.
This study investigates the overall and local response of porous media composed of a perfectly plastic matrix weakened by stress-free voids. Attention is focused on the specific role played by porosity fluctuations inside a representative volume element. To this end, numerical simulations using the Fast Fourier Transform (FFT) are performed on different classes of microstructure corresponding to different spatial distributions of voids. Three types of microstructures are investigated: random microstructures with no void clustering, microstructures with a connected cluster of voids and microstructures with disconnected void clusters. These numerical simulations show that the porosity fluctuations can have a strong effect on the overall yield surface of porous materials. Random microstructures without clusters and microstructures with a connected cluster are the hardest and the softest configurations, respectively, whereas microstructures with disconnected clusters lead to intermediate responses. At a more local scale, the salient feature of the fields is the tendency for the strain fields to concentrate in specific bands. Finally, an image analysis tool is proposed for the statistical characterization of the porosity distribution. It relies on the distribution of the ‘distance function’, the width of which increases when clusters are present. An additional connectedness analysis allows us to discriminate between clustered microstructures.  相似文献   

12.
This paper presents a study on the concurrent topology optimization of a structure and its material microstructure. A modified optimization model is proposed by introducing microstructure orientation angles as a new type of design variable. The new model is based on the assumptions that a structure is made of a material with the same microstructure, and the material may have a different orientation within the design domain of the structure. The homogenization theory is applied to link the material and structure scales. An additional post-processing technique is developed for modifying the obtained design to avoid local optima caused by the use of orientation angle variables.Numerical examples are presented to illustrate the viability and effectiveness of the proposed model. It is found that significant improvement in structural performance can be achieved by optimizing the orientation of microstructures in concurrent topology optimization of structures and materials.  相似文献   

13.
The purpose of this paper is to provide homogenization-based constitutive models for the overall, finite-deformation response of isotropic porous rubbers with random microstructures. The proposed model is generated by means of the “second-order” homogenization method, which makes use of suitably designed variational principles utilizing the idea of a “linear comparison composite.” The constitutive model takes into account the evolution of the size, shape, orientation, and distribution of the underlying pores in the material, resulting from the finite changes in geometry that are induced by the applied loading. This point is key, as the evolution of the microstructure provides geometric softening/stiffening mechanisms that can have a very significant effect on the overall behavior and stability of porous rubbers. In this work, explicit results are generated for porous elastomers with isotropic, (in)compressible, strongly elliptic matrix phases. In spite of the strong ellipticity of the matrix phases, the derived constitutive model may lose strong ellipticity, indicating the possible development of shear/compaction band-type instabilities. The general model developed in this paper will be applied in Part II of this work to a special, but representative, class of isotropic porous elastomers with the objective of exploring the complex interplay between geometric and constitutive softening/stiffening in these materials.  相似文献   

14.
复合材料周期性线弹性微结构的拓扑优化设计   总被引:16,自引:4,他引:16  
提出复合材料周期性线弹性微结构拓扑优化设计的模型,模型1设计具有极值弹性特性的复合材料,模型2设计工况最刚微结构单胞。通过该模型和均匀化技术可以获得优化的微结构单胞,进而改善或者得到最优宏观特性的复合材料。为了便于制造和应用,用胞体材料而不是多相材料来得到复合材料的极值弹性特性和最大刚度。优化结果表明,该模型与数值方法相结合可以有效地实现微结构的拓扑优化设计。  相似文献   

15.
16.
This work is devoted to the numerical and experimental study of annealing effects on microstructure and mechanical properties of the high-density polyethylene (HDPE). Uniaxiale tension tests are conducted at 25 °C in order to characterize the mechanical behavior of HDPE. The influence of the annealing treatment on the material microstructure is examined by the Fourier transform infrared spectroscopy, and microstructures are characterized using differential scanning calorimetry. The distribution of nonlinear relaxation approach is adopted to describe the mechanical response of virgin and annealed HDPE. Annealing effects are incorporated into the constitutive model by introducing the microstructure (crystallinity degree) evolution on the macroscopic response of the material. The numerical predictions of the model are in good agreement with experimental results for the different states of the material.  相似文献   

17.
均匀化方法在粘弹性多层复合材料中的应用   总被引:1,自引:0,他引:1  
主要研究了由各向同性线弹性加强体和各向同性线粘弹性基体组成的多层复合材料的问题,在已有的线弹性多层材料的均匀化方法的基础上,应用弹性一粘弹性对应原理,在Carson域中求解粘弹性多层材料的问题。通过Burgers模型表示线粘弹性基体材料,反演得到了多层材料的有效松弛模量和有效泊松比在时间域中的表达式,并且与实验结果和其他结果进行了比较。  相似文献   

18.
Elasticity and strength of partially sintered ceramics   总被引:1,自引:0,他引:1  
A discrete element model for the elastic and fracture behavior of partially sintered ceramics is presented. It accounts for the granular character of the material when a large amount of porosity (typically >0.2-0.4) is left after sintering. The model uses elastic force-displacement laws to represent the bond formed between particles during sintering. Bond fracture in tension and shearing is accounted for in the model. Realistic numerical microstructures are generated using a sintering model on random particle packings. In particular, packings with fugitive pore formers are used to create partially sintered microstructures with large pores. The effective elastic response and the strength of these microstructures are calculated in tension and compression. The link between important microstructural features such as bond size or coordination number and macroscopic behavior is investigated. In particular, it is shown that porosity alone is not sufficient to account for the mechanical properties of a partially sintered material.  相似文献   

19.
The homogenization results obtained by Bacca et al. (2013a), to identify the effective second-gradient elastic materials from heterogeneous Cauchy elastic solids, are extended here to the case of phases having non-isotropic tensors of inertia. It is shown that the nonlocal constitutive tensor for the homogenized material depends on both the inertia properties of the RVE and the difference between the effective and the matrix local elastic tensors. Results show that: (i) orthotropic nonlocal effects follow from homogenization of a dilute distribution of aligned elliptical holes and, in the limit case, of cracks; (ii) even under the dilute assumption and isotropic local effective behaviour, homogenization may lead to effective nonlocal orthotropic properties.  相似文献   

20.
On the nanoscale, the microstructure of pyrolytic carbon (PyC) is constituted by an ensemble of graphene planes, which manifest themselves as lattice fringes in high-resolution transmission electron microscope images. This microstructure can be also considered by an aggregate of so-called coherent domains consisting of stacks of graphene planes with a common unit normal vector. In order to homogenize the elastic behavior of PyC on the micro-level, image processing techniques are used to detect the coherent domains. Subsequently, the domain orientation distribution function (DODF) is modeled by means of a von Mises-Fisher distribution. The main objective of the present paper is to estimate the elastic properties of the coherent domains of the PyC microstructure. Moreover, the Hashin-Shtrikman bounds for the elastic properties can be determined by taking into account the DODF and by applying a nonlinear averaging procedure of the spatially dependent deviations of the local elastic properties. The elastic properties of the coherent domains are estimated by an inverse parameter identification of the Hashin-Shtrikman homogenization method by using effective elastic properties. The latter ones have been obtained based on an Fourier-based image processing algorithm and the orientation distribution function of the graphene planes in a recent paper (Böhlke et al. in Z Angew Math Mech, 2012).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号