首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel and versatile numerical form-finding procedure that requires only a minimal knowledge of the structure is presented. The procedure only needs the type of each member, i.e. either compression or tension, and the connectivity of the nodes to be known. Both equilibrium geometry and force densities are iteratively calculated. A condition of a maximal rank of the force density matrix and minimal member length, were included in the form-finding procedure to guide the search of a state of self-stress with minimal elastic potential energy. It is indeed able to calculate novel configurations, with no assumptions on cable lengths or cable-to-strut ratios. Moreover, the proposed approach compares favourably with all the leading techniques in the field. This is clearly exemplified through a series of examples.  相似文献   

2.
This paper presents a novel form-finding algorithm for tensegrity structures that is based on the finite element method. The required data for the form-finding is the topology of the structure, undeformed bar lengths, total cable length, prestress of cables and stiffness of bars. The form-finding is done by modifying the single cable lengths such that the total cable length is preserved and the potential energy of the system is minimized. Two- and three-dimensional examples are presented that demonstrate the excellent performance of the proposed algorithm.  相似文献   

3.
A numerical method is presented for form-finding of tensegrity structures. Eigenvalue analysis and spectral decomposition are carried out iteratively to find the feasible set of force densities that satisfies the requirement on rank deficiency of the equilibrium matrix with respect to the nodal coordinates. The equilibrium matrix is shown to correspond to the geometrical stiffness matrix in the conventional finite element formulation. A unique and non-degenerate configuration of the structure can then be obtained by specifying an independent set of nodal coordinates. A simple explanation is given for the required rank deficiency of the equilibrium matrix that leads to a non-degenerate structure. Several numerical examples are presented to illustrate the robustness as well as the strong ability of searching new configurations of the proposed method.  相似文献   

4.
A new computational framework is proposed for the form-finding and design of tensegrity structures with or without super-stability. The form-finding of tensegrities is formulated as two unconstrained minimisation problems where their objective functions are defined based on eigenvalues of a modified force density matrix. The Nelder–Mead simplex method is then used to solve the minimisation problems. Furthermore, another efficient method is suggested for the interactive form-finding and design of tensegrities with geometrical and force constraints. Examples of the form-finding of tensegrities are presented and the results obtained are compared and contrasted with those analytical results documented in the literature, to verify the accuracy and efficiency of the developed methods.  相似文献   

5.
We propose a Monte Carlo form-finding method that employs a stochastic procedure to determine equilibrium configurations of a tensegrity structure. This method does not involve complicated matrix operations or symmetry analysis, works for arbitrary initial configurations, and can handle large scale regular or irregular tensegrity structures with or without material/geometrical constraints.  相似文献   

6.
This paper concerns the design of tensegrity structures with optimal mass-to-stiffness ratio. Starting from an initial layout that defines the largest set of allowed element connections, the procedure seeks the topology, geometry and prestress of the structure that yields optimal designs for different loading scenarios. The design constraints include strength constraints for all elements of the structure, buckling constraints for bars, and shape constraints. The problem formulation accommodates different symmetry constraints for structure parameters and shape. The static response of the structure is computed by using the nonlinear large displacement model. The problem is cast in the form of a nonlinear program. Examples show layouts of 2D and 3D asymmetric and symmetric structures. The influence of the material parameters on the optimal shape of the structure is investigated.  相似文献   

7.
Tension members with a zero rest length allow the construction of tensegrity structures that are in equilibrium along a continuous path of configurations, and thus exhibit mechanism-like properties; equivalently, they have zero stiffness. The zero-stiffness modes are not internal mechanisms, as they involve first-order changes in member length, but are a direct result of the use of the special tension members. These modes correspond to an infinitesimal affine transformation of the structure that preserves the length of conventional members, they hold over finite displacements and are present if and only if the directional vectors of those members lie on a projective conic. This geometric interpretation provides several interesting observations regarding zero stiffness tensegrity structures.  相似文献   

8.
In this paper we present a strategy for tensegrity structures deployment. The main idea is to use a certain set of equilibria to which the undeployed and deployed configurations belong. In the state space this set is represented by an equilibrium manifold. The deployment is conducted such that the deployment trajectory is close to this equilibrium manifold.  相似文献   

9.
A numerical method is presented for form-finding of cable-strut structures. The topology and the types of members are the only information that is required in this form-finding process. Dummy members are used to transform the cable-strut structure with supports into self-stressed system without supports. The requirement on rank deficiencies of the force density and equilibrium matrices for the purpose of obtaining a non-degenerate d-dimensional self-stressed structure has been explicitly discussed. The spectral decomposition of the force density matrix and the singular value decomposition of the equilibrium matrix are performed iteratively to find the feasible sets of nodal coordinates and force densities which satisfy the minimum required rank deficiencies of the force density and equilibrium matrices, respectively. Based on numerical examples it is found that the proposed method is very efficient, robust and versatile in searching self-equilibrium configurations of cable-strut structures.  相似文献   

10.
双向张弦梁找形的有限元法   总被引:1,自引:0,他引:1  
根据双向张弦梁上弦压力和下弦拉力在节点产生的竖向分力与撑杆高度之间的关系推导了单元刚度矩阵,根据外荷载与上弦和下弦在节点产生的竖向分力相等的原则建立了以撑杆高度为未知数的双向张弦梁找形的线性有限元列式并编制了有限元程序,给出了张弦梁计算时下弦拉索初应变确定方法和张拉控制方法;通过对平屋顶和曲面屋顶双向张弦梁2个算例找形计算和受力分析验证了找形方法的正确性以及撑杆高度与屋面形状的无关性,本文给出的计算方法将撑杆高度作为未知量,考虑了上弦为曲面时拱的作用,计算方便、结果准确.  相似文献   

11.
12.
Stability conditions for tensegrity structures are derived based on positive definiteness of the tangent stiffness matrix, which is the sum of the linear and geometrical stiffness matrices. A necessary stability condition is presented by considering the affine motions that lie in the null-space of the geometrical stiffness matrix. The condition is demonstrated to be equivalent to that derived from the mathematical rigidity theory so as to resolve the discrepancy between the stability theories in the fields of engineering and mathematics. Furthermore, it is shown that the structure is guaranteed to be stable, if the structure satisfies the necessary stability condition and the geometrical stiffness matrix is positive semidefinite with the minimum rank deficiency for non-degeneracy.  相似文献   

13.
R. Motro 《Meccanica》2011,46(1):27-40
The coupling between form and forces, their structural morphology, is a key point for tensegrity systems. In the first part of this paper we describe the design process of the simplest tensegrity system which was achieved by Kenneth Snelson. Some other simple cells are presented and tensypolyhedra are defined as tensegrity systems which meet polyhedra geometry in a stable equilibrium state. A numerical model giving access to more complex systems, in terms of number of components and geometrical properties, is then evoked. The third part is devoted to linear assemblies of annular cells which can be folded. Some experimental models of the tensegrity ring which is the basic component of this “hollow rope” have been realized and are examined.  相似文献   

14.
The dynamic behavior of a simple elastic tensegrity structure is examined, in order to validate observations that the natural damping of the elastic elements in such a structure is poorly mobilized, due to the natural flexibility of the equilibrium position of the structure. It is confirmed, analytically and numerically, that the energy decay of such a system is slower than that of a linearly-damped system.  相似文献   

15.
This paper demonstrates that symmetric tensegrity structures can have a shape memory effect. It has been found that the ratio of potential energy between two equilibrium states can vary considerably when the original length of the elastic elements is changed. It is then suggested that those structures may be used as shape memory actuators.  相似文献   

16.
This paper proposes and demonstrates a symbolic procedure to compute the stiffness of truss structures built up from simple basic units. Geometrical design parameters enter in this computation. A set of equations linear in the degrees-of-freedom, but nonlinear in the design parameters, is solved symbolically in its entirety. The resulting expressions reveal the values of the design parameters which yield desirable properties for the stiffness or stiffness-to-mass ratio. By enumerating a set of topologies, including the number of basic units, and a set of material distribution models, stiffness properties are optimized over these sets. This procedure is applied to a planar tensegrity truss. The results make it possible to optimize the structure with respect to stiffness properties, not only by appropriately selecting (continuous) design parameters like geometric dimensions, but also by selecting an appropriate topology for the structure, e.g., the number of basic units, and a material distribution model, all of which are discrete design decisions.  相似文献   

17.
As a special type of novel flexible structures, tensegrity holds promise for many potential applications in such fields as materials science, biomechanics, civil and aerospace engineering. Rhombic systems are an important class of tensegrity structures, in which each bar constitutes the longest diagonal of a rhombus of four strings. In this paper, we address the design methods of rhombic structures based on the idea that many tensegrity structures can be constructed by assembling one-bar elementary cells. By analyzing the properties of rhombic cells, we first develop two novel schemes, namely, direct enumeration scheme and cell-substitution scheme. In addition, a facile and efficient method is presented to integrate several rhombic systems into a larger tensegrity structure. To illustrate the applications of these methods, some novel rhombic tensegrity structures are constructed.  相似文献   

18.
张拉膜结构力密度法混合找形分析   总被引:3,自引:0,他引:3  
论述了张拉膜结构力密度法混合找形的基本理论;所谓力密度法混合找形,即部分单元力密度控制,部分单元弹性控制;力密度控制采用线性求解,弹性控制采用非线性求解,通过迭代计算混合找形求出各结点的坐标值。据此编制了相应的计算软件;对工程实例进行了验算,结果表明,本文给出的计算结果与德国著名软件easy的计算结果相吻合。  相似文献   

19.
This paper characterizes the necessary and sufficient conditions for tensegrity equilibria. Static models of tensegrity structures are reduced to linear algebra problems, after first characterizing the problem in a vector space where direction cosines are not needed. This is possible by describing the components of all member vectors. While our approach enlarges (by a factor of 3) the vector space required to describe the problem, the advantage of enlarging the vector space makes the mathematical structure of the problem amenable to linear algebra treatment. Using the linear algebraic techniques, many variables are eliminated from the final existence equations.  相似文献   

20.
As tensegrity research is moving away from static structures toward active structures it is becoming critical that new actuation strategies and comprehensive active structures theories are developed to fully exploit the properties of tensegrity structures. In this paper a new general tensegrity paradigm is presented that incorporates a concept referred to as clustered actuation. Clustered actuation exploits the existence of cable elements in a tensegrity structure by allowing cables to be run over frictionless pulleys or through frictionless loops at the nodes. This actuation strategy is a scalable solution that can be utilized for active structures that incorporate many active elements and can reduce the number of actuators necessary for complex shape changes. Clustered actuation also has secondary benefits, specifically reducing the force requirements of actuators in dynamic structures, reducing the number of pre-stress modes to potentially one global mode and relieving element size limitations that occur with embedded actuation. Newly formulated clustered equilibrium equations are developed using energy methods and are shown to be a generalization of the classic tensegrity governing equations. Pre-stress analysis, mechanism analysis and stability of clustered structures are discussed. Lastly, examples compare the mechanics of a clustered structure to an equivalent classic structure and the utility of clustering is highlighted by allowing for actuation throughout a class 1 (no bar-to-bar connections) tensegrity while not embedding the actuators into the structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号