共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, an analytical solution based on a molecular mechanics model is developed to evaluate the mechanical properties of armchair and zigzag single-walled carbon nanotubes (SWCNTs). Adopting the Perdew–Burke–Ernzerhof (PBE) exchange correlation, the density functional theory (DFT) calculations are performed within the generalized gradient approximation (GGA) to evaluate force constants used in the molecular mechanics model. After that, based on the principle of molecular mechanics, explicit expressions are proposed to obtain surface Young’s modulus, Poisson’s ratio and surface shear modulus of SWCNTs corresponding to both types of armchair and zigzag chiralities. Based on the DFT calculations, it is found that the flexural rigidity of graphene is independent of the type of chirality which indicates the isotropic characteristic of this material. Moreover, it is observed that for the all values of nanotube diameter, surface Young’s modulus for the armchair nanotube is more than that of zigzag nanotube. It is shown that the trend predicted by the present model is in good agreement with other models which confirms the validity as well as the accuracy of the present molecular mechanics model. 相似文献
2.
《International Journal of Solids and Structures》2003,40(10):2487-2499
This paper presents a structural mechanics approach to modeling the deformation of carbon nanotubes. Fundamental to the proposed concept is the notion that a carbon nanotube is a geometrical frame-like structure and the primary bonds between two nearest-neighboring atoms act like load-bearing beam members, whereas an individual atom acts as the joint of the related load-bearing beam members. By establishing a linkage between structural mechanics and molecular mechanics, the sectional property parameters of these beam members are obtained. The accuracy and stability of the present method is verified by its application to graphite. Computations of the elastic deformation of single-walled carbon nanotubes reveal that the Young’s moduli of carbon nanotubes vary with the tube diameter and are affected by their helicity. With increasing tube diameter, the Young’s moduli of both armchair and zigzag carbon nanotubes increase monotonically and approach the Young’s modulus of graphite. These findings are in good agreement with the existing theoretical and experimental results. 相似文献
3.
Hsien-Chie Cheng Yang-Lun Liu Yu-Chen Hsu Wen-Hwa Chen 《International Journal of Solids and Structures》2009,46(7-8):1695-1704
The study attempts to explore the influences of the surface effect resulting in an initial relaxed unstrained deformation and the in-layer non-bonded van der Waals (vdW) atomistic interactions on the mechanical properties of single-walled carbon nanotubes (SWCNTs) using a proposed atomistic-continuum modeling (ACM) approach. The modeling approach incorporates atomistic modeling, by virtue of molecular dynamics (MD) simulation, for simulating the initial unstrained equilibrium state, and equivalent-continuum modeling (ECM), by way of finite element approximations (FEA), for modeling the subsequent static/dynamic behaviors.SWCNTs with various radius and two different chiralities, including zigzag and armchair type, are presented. To validate the proposed technique, the present results are compared with the literature data, including numerical and experimental values. Results show that the derived elastic moduli (1.2–1.4 TPa) when considering these two nanoeffects tend to be more consistent with the published experimental data. In specific, they can increase up to 17–23% Young’s modulus, 5–15% shear modulus, 6–11% natural frequencies and 10–30% critical buckling load of the SWCNTs, implying that without considering these two effects, the material behaviors of SWCNTs would be potentially underestimated. 相似文献
4.
A molecular structural mechanics approach to carbon nanotubes on graphics processing units (GPUs) is reported. As a powerful parallel and relatively low cost processor, the GPU is used to accelerate the computations of the molecular structural mechanics approach. The data structures, matrix-vector multiplication algorithm, texture reduction algorithm, and ICCG method on the GPU are presented. The computations for Young's moduli of carbon nanotubes by the molecular structural mechanics approach on the GPU show its accuracy. The running times of large degree of freedom (DOF) carbon nanotubes, whose DOF is larger than 100,000, on the GPU are compared against those on the CPU, proving the GPU can accelerate the computations of the molecular structural mechanics approach to carbon nanotubes. 相似文献
5.
Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model
Tienchong Chang 《Journal of the mechanics and physics of solids》2003,51(6):1059-1074
An analytical model based on a molecular mechanics approach is presented to relate the elastic properties of a single-walled carbon nanotube to its atomic structure. We derive closed-form expressions for elastic modulus and Poisson's ratio as a function of the nanotube diameter. Properties at different length scales are directly connected via these expressions. The analytically calculated elastic properties for achiral nanotubes using force constants obtained from experimental data of graphite are compared to those based on tight binding numerical calculations. This study represents a preliminary effort to develop analytical methods of molecular mechanics for applications in nanostructure modeling. 相似文献
6.
《International Journal of Solids and Structures》2007,44(21):6914-6929
This paper discusses in details the relation between the bond bending stiffness used in molecular mechanics and the bending stiffness used in structural mechanics for zigzag carbon nanotubes (CNTs).Recent publications assumed the structural bending stiffness EI/a to be a constant and set it equal to the molecular bond bending stiffness C. By developing a closed form expression for the deformation of zigzag CNTs under simple tension, we suggest that the relation between EI/a and C is more complex. It actually depends on the bond bending stiffness C, the torsional angle φ and the lattice translational index n. In the limit of an infinite tube radius, which represents a graphene sheet, EI/a tends to C/2. Numerical simulations are also presented that validate the results. 相似文献
7.
In this paper, by capturing the atomic information and reflecting the behaviour governed by the nonlinear potential function,
an analytical molecular mechanics approach is proposed. A constitutive relation for single-walled carbon nanotubes (SWCNT’s)
is established to describe the nonlinear stress-strain curve of SWCNT’s and to predict both the elastic properties and breaking
strain of SWCNT’s during tensile deformation. An analysis based on the virtual internal bond (VIB) model proposed by P. Zhang
et al. is also presented for comparison. The results indicate that the proposed molecular mechanics approach is indeed an
acceptable analytical method for analyzing the mechanical behavior of SWCNT’s.
The project supported by the National Natural Science Foundation of China (10121202, 90305015 and 10328203), the Key Grant
Project of Chinese Ministry of Education (0306) and the Research Grants Council of the Hong Kong Special Administrative Region,
China (HKU 7195/04E). 相似文献
8.
Tienchong Chang 《Journal of the mechanics and physics of solids》2010,58(9):1422-1433
Single-walled carbon nanotubes (SWCNTs) are frequently modeled as isotropic elastic shells. However, there are obvious evidences showing that SWCNTs exhibit remarkable chirality induced anisotropy that should not be neglected in some cases. In this paper, we derive the closed-form expressions for the anisotropic elastic properties of SWCNTs using a molecular mechanics model. Based on these anisotropic elastic properties, we develop a molecular based anisotropic shell model (MBASM) for predicting the mechanical behavior of SWCNTs. The explicit expressions for the coupling of axial, circumferential, and torsional strains, the radial breathing mode frequency, and the longitudinal and torsional wave speeds are obtained. We show that the MBASM is capable of predicting the effects of size and chirality on these quantities. The efficiency and accuracy of the MBASM are validated by comparisons of the present results with the existing results. 相似文献
9.
Karthick Chandraseker Jeffrey T. Paci 《Journal of the mechanics and physics of solids》2009,57(6):932-230
The focus of the present work is an atomistic-continuum model of single-walled carbon nanotubes (CNTs) based on an elastic rod theory which can exhibit geometric as well as material nonlinearity [Healey, T.J., 2002. Material symmetry and chirality in nonlinearly elastic rods. Mathematics and Mechanics of Solids 7, 405-420]. In particular, the single-walled carbon nanotube (SWNT) is modeled as a one-dimensional elastic continuum with some finite thickness bounded by the lateral surface. Exploitation of certain symmetries in the underlying atomic structure leads to suitable representations of the continuum elastic strain energy density in terms of strain measures that capture extension, twist, bending, and shear deformations [Healey, T.J., 2002. Material symmetry and chirality in nonlinearly elastic rods. Mathematics and Mechanics of Solids 7, 405-420]. Bridging between the atomic scale and the effective continuum is carried out by parameterization of the continuum elastic energy and determination of the parameters using unit cell atomistic simulations over a range of deformation magnitudes and types. Specifically, the proposed model takes into account (a) bending, (b) twist, (c) shear, (d) extension, (e) coupled extension and twist, and (f) coupled bending and shear deformations. The extracted parameters reveal benefits of accounting for important anisotropic and large-strain effects as improvements over employing traditional, linearly elastic, isotropic, small-strain, continuum models to simulate deformations of atomic systems such as SWNTs. It is envisioned that the proposed approach and the extracted model parameters can serve as a useful input to simulations of SWNT deformations using existing nonlinearly elastic continuum codes based, for example, on the finite element method (FEM). 相似文献
10.
Lai Jiang 《Journal of the mechanics and physics of solids》2011,59(6):1204-1213
We present an analytical study for the elastic properties of single-walled boron nitride nanotubes via a molecular mechanics model. Closed-form expressions for Young's modulus, Poisson's ratio and surface shear modulus are derived as functions of the nanotube diameter. The results are helix angle sensitive and comparable to those from ab initio calculations. This work is a first effort to establish analytical model of molecular mechanics for composite nanotubes and reveals the dissimilarities between size-dependent elastic properties of carbon and boron nitride nanotubes. 相似文献
11.
系统地研究了金属-碳纳米管复合结构的力学行为,考察了单轴压缩载荷作用下填充管的临界屈曲应变对管内金属原子数目的依赖性,分析了管的几何特征,包括管径、管长及手性,对填充管变形与力学行为的影响,并与连续体力学模型的预测进+行了对比分析.本文的研究结果对金属-碳管复合结构的理论研究和工程应用都具有较好的指导意义. 相似文献
12.
双马来酰亚胺树脂是高性能碳纤维复合材料的新型基体材料,在航空航天等领域具有广泛的应用。目前,相关材料的改性技术、制备工艺以及材料性能等考察仍以实验为主,数值模型及相应的分析方法则相对较少。本文构建了4,4′—二苯甲烷双马来酰亚胺(BDM)和二烯丙基双酚A(DABPA,固化剂)的分子尺度数值模型,实现了与实验过程基本一致的交联反应过程,考察了BDM/DABPA树脂材料的力学性质以及由碳纳米管填充所引起的强化规律和机理。结果表明,树脂材料的力学性质随着交联程度的提高而增加,而短碳纳米管的掺杂也可以进一步增强力学性质。研究工作为基于双马树脂的复合材料设计构建了数值分析技术,为相关材料的性能改进从微观层次提供了有价值的参考。 相似文献
13.
Coupled effects of mechanical and electronic behavior in single walled carbon nanotu besare investigated by using quantum mechanics and quantum molecular dynamics. It is found that external applied electric fields can cause charge polarization and significant geometric deformation in metallic and semi-metallic carbon nanotubes. The electric induced axial tension ratio can be up to 10% in the armchair tube and 8.5% in the zigzag tube. Pure external applied load has little effect on charge distribution,but indeed influences the energy gap. Tensile load leads to a narrower energy gap and compressive load increases the gap. When the CNT is tensioned under an external electric field, the effect of mechanical load on the electronic structures of the CNT becomes significant, and the applied electric field may reduce the critical mechanical tension load remarkably. Size effects are also discussed. 相似文献
14.
The influence of mechanical deformation on the electrical properties of single wall carbon nanotubes
Recent experimental studies and atomistic simulations have shown that carbon nanotubes (CNTs) display strong interplay between the mechanical deformation and electrical properties. We have developed a simple and accurate method to determine atom positions in a uniformly deformed CNT via a continuum analysis based on the interatomic potential. A shift vector is introduced to ensure the equilibrium of atoms. Such an approach, involving only three variables for the entire CNT, agrees very well with the molecular mechanics calculations. We then study the effect of mechanical deformation on the band gap change of single wall CNTs under tension, torsion, and combined tension/torsion via the k-space tight-binding method. Prior studies without this shift vector lead to significant overestimation of the band gap change. It is established that the conducting CNTs may easily become semi-conducting ones subject to mechanical deformation, but the semi-conducting CNTs never become conducting ones upon deformation. 相似文献
15.
Xiaogang WU Kuijun CHEN Zhaowei WANG Ningning WANG Teng ZHAO Yanan XUE Yanqin WANG Weiyi CHEN 《应用数学和力学(英文版)》2018,39(6):813-828
The articular cartilage (AC) can be seen as a biphasic poroelastic material. The cartilage deformation under compression mainly leads to an interstitial fluid flow in the porous solid phase. In this paper, an analytical poroelastic model for the AC under laboratorial mechanical testing is developed. The solutions of interstitial fluid pressure and velocity are obtained. The results show the following facts. (i) Both the pressure and fluid velocity amplitudes are proportional to the strain loading amplitude. (ii) Both the amplitudes of pore fluid pressure and velocity in the AC depend more on the loading amplitude than on the frequency. Thus, in order to obtain the considerable fluid stimulus for the AC cell responses, the most effective way is to increase the loading amplitude rather than the frequency. (iii) Both the interstitial fluid pressure and velocity are strongly affected by permeability variations. This model can be used in experimental tests of the parameters of AC or other poroelastic materials, and in research of mechanotransduction and injury mechanism involved interstitial fluid flow. 相似文献
16.
《International Journal of Solids and Structures》2007,44(17):5447-5465
The effects of chirality and boundary conditions on the elastic properties and buckling behavior of single-walled carbon nanotubes are investigated using atomistic simulations. The influences of the tube length and diameter are also included. It is found that the elastic properties of carbon nanotubes at small deformations are insensitive to the tube chirality and boundary conditions during compression. However, for large deformations occurred upon both compression and bending, the tube buckling behavior is shown to be very sensitive to both tube chirality and boundary conditions. Therefore, while the popular continuum thin shell model can be successfully applied to describe nanotube elastic properties at small deformation such as the Young’s modulus, it cannot correctly account for the buckling behavior. These results may allow better evaluation of nanotube mechanical properties via appropriate atomistic simulations. 相似文献
17.
18.
The nonlinear atomistic interactions usually involve softening behavior. Instability resulting directly from this softening are called the material instability, while those unrelated to this softening are called the structural instability. We use the finite-deformation shell theory based on the interatomic potential to show that the tension instability of single-wall carbon nanotubes is the material instability, while the compression and torsion instabilities are structural instability. 相似文献
19.
A continuum-based model for computing strain energies and estimating Young’s modulus of single-walled carbon nanotubes (SWCNTs) is developed by using an energy equivalence-based multi-scale approach. A SWCNT is viewed as a continuum hollow cylinder formed by rolling up a flat graphite sheet that is treated as an isotropic continuum plate. Kinematic analysis is performed on the continuum level, with the Hencky (true) strain and the Cauchy (true) stress being employed to account for finite deformations. Based on the equivalence of the strain energy and the molecular potential energy, a formula for calculating Young’s modulus of SWCNTs is derived. This formula, containing both the molecular and continuum scale parameters, directly links macroscopic responses of nanotubes to their molecular structures. Sample numerical results show that the predictions by the new model compare favorably with those by several existing continuum and molecular dynamics models. 相似文献
20.
Advances in the prediction of the mechanical properties of single-walled carbon nanotubes (SWNTs) are reviewed in this paper. Based on the classical Cauchy-Born rule, a new computational method for the prediction of Young's modulus of SWNTs is investigated. Compared with the existing approaches, the developed method circumvents the difficulties of high computational efforts by taking into consideration of the microstructure of nanotube and the atomic potential of hydrocarbons. Numerical results of Young's modulus and its variation with respect to the deformation gradient tensor are given and discussed. The results obtained are in good agreement with those obtained by laboratory experiments and other numerical methods. 相似文献