首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A.M. Nassar  S.H.N. Radwan  H.M. Ragab 《Journal of Non》2008,354(40-41):4630-4634
Different glass samples in the Li2O, PbO and B2O3 system have been prepared by melt quenching method. These glasses were classified in two groups such as 0.5 B2O3, (0.5 ? x) PbO, xLi2O and (0.5 + y) B2O3; (0.25 ? y)PbO; 0.25Li2O. The IR spectra almost show broad bands in the frequency range (800–1050) cm?1 and (1100–1500) cm?1, together with different weak bands over the range of investigation (2400–3000) cm?1. The deconvolution analyses of these IR spectra reveals presence of multi structure arrangements from BO4 and BO3 groups, such as penta, tri, and diborates grouping together with meta; ortho borates as well as PbOn groups. Partial replacement of PbO by Li2O causes decrease in microhardness, a change which is attributed to the decrease in the concentration of ortho borate groups as is it revealed from the bands area analysis. The IR analysis shows also that the total concentration of (meta + ortho) borates is nearly constant while their individual concentrations is proportional depending on the relative concentration of PbO and Li2O.  相似文献   

2.
This work presents a study on the structure, microstructure and properties of 50Li2xB2O3·(50 ? x)P2O5 glasses. The structure has been studied through NMR spectroscopy and the microstructure by TEM. The properties of the glasses are discussed according to their structure and microstructural features. The introduction of boron produces new linkages between phosphate chains through P–O–B bonds, whose amount increases with boron incorporation; at the same time, a depolymerisation of the phosphate chains into Q1-type phosphate units takes place. The introduction of boron produces an increase in Tg together with a decrease in the molar volume. The room temperature electrical conductivity increases with boron content as well. However, B2O3 contents higher than 20 mol% lead to crystallisation of lithium orthophosphate which contributed to hinder ionic conduction of the glasses.  相似文献   

3.
《Journal of Non》2007,353(18-21):2084-2089
Neutron diffraction structure study has been performed on multi-component sodium borosilicate based waste glasses with the composition of (65  x)SiO2. · xB2O3 · 25Na2O · 5BaO · 5ZrO2, x = 5–15 mol%. The maximum momentum transfer of the experimental structure factor was 30 Å−1, which made available to determine the distribution function with high r-space resolution. Reverse Monte Carlo modelling was applied to calculate several partial atomic pair correlation functions, nearest neighbor distances and coordination numbers have been revealed. The characteristic features of Si–O and Si–Si distributions are similar for all glassy samples, suggesting that the Si–O network consisting of tetrahedral SiO4 units is highly stable even in the multi-component glasses. The B–O correlations proved to be fairly complex, two distinct first neighbor distances are present at 1.40 Å and 1.60 Å, the latter equals the Si–O distance. Coordination number distribution analyzes has revealed 3 and four-coordinated boron atoms. The O–O distribution suggests a network configuration consisting of boron rich and silicon rich regions. Our findings are consistent with a structure model where the boron rich network contains mostly trigonal BO3 units, and the silicon rich network is formed by a mixed continuous network of [4]Si–O–Si[4] with several different [4]B–O–Si[4] and [3]B–O–Si[4] linkages.  相似文献   

4.
《Journal of Non》2007,353(11-12):1150-1163
Pseudo-binary sodium borate glasses containing (1  y)Na2B4O7yMaOb (where MaOb = PbO, Bi2O3 and TeO2) (y = 0.25, 0.5, 0.67 and 0.79) have been investigated. Sound velocities (longitudinal and shear) have been measured at 10 MHz frequency using quartz transducers. Density increases with increase of y and the molar volume decreases. Sound velocities also decrease with increasing y till y  0.66 above which it increases slightly. Steeper decrease in velocities has been observed in TeO2 containing glasses. Elastic moduli, Poisson’s ratio and Debye temperature have been calculated. Glass transition temperatures have also been determined and it decreases with increase of y. Tg also exhibits a dependence on the cationic charge in MaOb. Infrared spectra of the glasses reveal that the strong network consisting of diborate units is affected only by PbO and only very marginally by Bi2O3 and TeO2. Only glasses with high concentrations of Bi2O3 and TeO2 reveal the presence of mixed bridges such as Bi–O–B and Te–O–B. Consistent with the IR spectral observations, the N4 values of 11B MAS-NMR remain close to the ideal value of 0.5 of the diborate composition in most of the glasses. A structural model based on the observation that the diborate network is unaffected by Bi2O3 and TeO2 where as PbO opens up and breaks the diborate units is shown to be consistent with all of the experimental observations including mechanical properties.  相似文献   

5.
Two series of boroaluminosilicate glasses having varying mole ratios of B2O3/Na2O (series 1) and B2O3/SiO2 (series II) were prepared by conventional melt-quench method. Based on 29Si and 11B MAS NMR studies, it has been established that for series I glasses up to 15 mol% B2O3 content, Na2O preferentially interacts with B2O3 structural units resulting in the conversion of BO3 to BO4 structural units. Above 15 mol% B2O3 for series I glasses and for all the investigated compositions of the series II glasses, silicon structural units are unaffected whereas boron exist in both trigonal and tetrahedral configurations. Variation of microhardness values of these glasses as a function of composition has been explained based on the change in the relative concentration of BO4 and BO3 structural units. These glasses in the powder form can act as efficient room temperature ion exchangers for metal ions like Cu2+. It is seen that the ion exchange does not affect the boron and silicon structural units as revealed by IR studies.  相似文献   

6.
S. Rada  M. Culea  E. Culea 《Journal of Non》2008,354(52-54):5491-5495
Glasses in the system (1 ? x)TeO2 · xB2O3 glasses (with x = 0.3 and 0.4) have been prepared from melt quenching method. The structural changes were studied by FTIR spectroscopy and DFT calculations. From the analysis of the FTIR spectra it is reasonable to assume that when increasing boron ions content the tetrahedral [BO4] units are gradually replaced by trigonal [BO3] units. The increase in the number of non-bridging oxygen atoms would decrease the connectivity of the glass network, would depolymerize of borate chains and would necessite quite a radical rearrangement of the network formed by the [TeO6] octahedral. This is possible considering that tellurium dioxide brings stoichiometrically two oxygen atoms in [TeO4] and needs an additional oxygen atom for the formation of [TeO6] octahedra. This additional oxygen atom is evidently taken off from the boron co-ordination and thus boron atoms transfer their [BO4] co-ordination into [BO3] co-ordination. We used the FTIR spectroscopic data in order to compute two possible models of the glasses matrix. We propose two possible structural models of building blocks for the formation of continuous random network glasses used by density functional theory (DFT) calculations.  相似文献   

7.
CuO doped lead borate glasses of the composition PbO 70%–B2O3 30% with varying CuO contents were prepared. UV–visible and infrared spectroscopic studies were measured before and after successive gamma irradiation with two different doses namely 2 and 8 Mrad. The experimental results indicate that the undoped sample reveals strong UV–near visible absorption while copper doped samples show additional broad visible band due to (Cu2 +) ions.FT infrared absorption spectrum reveals vibrational bands due to triangular and tetrahedral borate groups together with the sharing of Pb–O vibrations.CuO-doped glasses have been found to show a shielding behavior towards the effects of progressive gamma irradiation causing the maintenance of the spectral curves. The changes in the UV–visible and infrared spectral data are discussed in relation to the states of copper ions and structural evolution caused by the change in glass composition including the CuO.  相似文献   

8.
The possibility of extracting boron impurity from metallurgical-grade silicon by lithium containing slag refining for solar cell application was investigated. The distribution coefficients of boron between CaO–SiO2–Li2O and CaO–SiO2–LiF slags were examined. The boron content in the refined silicon was studied under different conditions of mass ratio of slag to silicon and refining time. The results showed that a small amount of Li2O or LiF had significant effect on the distribution coefficients of boron. The removal of boron impurity using CaO–SiO2–LiF system was more effective than using CaO–SiO2–Li2O system. Values of boron content in the refined silicon did not decrease significantly when the mass ratio exceeded 4, while it had been obviously falling with the increase in refining time. When the mass ratio of CaO–SiO2–Li2O slag to metallurgical-grade silicon was 4, the boron content in silicon was successfully reduced from 2.2 × 10? 5 to 1.3 × 10? 6 after slag refining for 2 h at 1823 K.  相似文献   

9.
E. Mansour 《Journal of Non》2012,358(3):454-460
A series of glass of the molar formula xAl2O3-(50-x)PbO-25B2O3-25SiO2 with x:2.5–17.5 with step of 2.5 mol.% was prepared and measured for, density, molar volume and infrared absorption. A semiquantitative analysis of the IR spectra was performed. It was found that each oxide would contribute in density with a specific factor. The density factor related to PbO is markedly higher than that of the other two oxides represent the glass skeleton which means that the content of PbO is the main factor affecting the density. The depolymerization of the whole glass skeleton increases with increasing the content of Al2O3. There is a competition between the role of PbO and Al2O3 in changing the value of N4 and the crosslinking of the glass network. The silicate network tends to be distinguished from the reminder of the whole glass network with increasing alumina. The IR band located near 700 cm? 1 was suggested to be due to the vibrations of bridging oxygens between trigonal boron atoms. An essential change in the role of PbO in these glasses from glass modifier to glass former occurred around 12 mol.% Al2O3.  相似文献   

10.
《Journal of Non》2006,352(52-54):5508-5514
Synthesis and devitrification behavior of Cr-doped CaO–GeO2–Li2O–B2O3(Al2O3) glasses have been studied. A range of glass compositions was found to yield transparent glass-ceramics after devitrification. The size of crystallites is below 1 μm. Glass-ceramic samples exhibit 1050–1600 nm broad-band emission with a maximum around 1260 nm, very similar to the emission of Cr4+:Ca2GeO4 bulk crystals. X-ray diffraction measurements indicate that the structure of crystallites exhibiting near infrared emission in glass-ceramics may be assigned to Cr4+:Ca2GeO4 with increased lattice parameters.  相似文献   

11.
ZnO–B2O3–P2O5 glasses doped with MoO3 were investigated in the series (100?x)[0.5ZnO–0.1B2O3–0.4P2O5]–xMoO3, where bulk glasses were obtained by slow cooling in air within the compositional region of 0 ? x ? 60 mol% MoO3. The incorporation of MoO3 into the parent zinc borophosphate glass results in a weakening of bond strength in the structural network, which induces a decrease in chemical durability and glass transition temperature. Raman spectra reflect the incorporation of molybdate groups into the glass network of the studied glasses by the presence of the polarized vibrational band at ≈976 cm?1 ascribed to the MOx symmetric stretching vibrations and the depolarized band at ≈878 cm?1 ascribed to the Mo–O–Mo stretching vibration. The incorporation of molybdate units into the glass network results in the depolymerization of phosphate chains and the formation of P–O–Mo bonds, as reflected in Raman and 31P NMR spectra. According to the 11B MAS NMR spectra, tetrahedral B(OP)4?x(OMo)x units are formed in the glasses, whereas only a small amount of BO4 units is converted to BO3 units in the MoO3-rich glasses.  相似文献   

12.
The mixed glass former effect (MGFE) is defined as the non-linear and non-additive change in the ionic conductivity with changing glass former fraction at constant modifier composition between two binary glass former compositions. In this study, sodium borophosphate glasses, 0.35Na2O + 0.65[xB2O3 + (1 ? x)P2O5] with 0  x  1, have been prepared and their glass transition temperatures (Tg) have been examined as an alternative indicator of the MGFE and as an indicator of changes in the short range order (SRO) structural network units that could cause or contribute to the MGFE. The changes in Tg show a positive non-additive and non-linear trend over the changing glass former fraction, x. The increase in Tg is related to the increasing number of bridging oxygens (BO) in the glass samples, which is caused by the increase in the number of tetrahedral boron, B4, units in the SRO structure.  相似文献   

13.
Glass samples from four systems: xPbO–(100?x)B2O3 (x = 30, 40, 50 and 60 mol%), 50PbO–yAl2O3–(50?y)B2O3 (y = 2, 4, 6, 8 mol%), 50PbO–ySiO2–(50?y)B2O3 (y = 5, 10, 20, 30 mol%) and 50PbO–5SiO2yAl2O3–(45?y)B2O3 (y = 2, 4, 6, 8 mol%) were prepared by a melt-quench technique. Characterization of these systems was carried out using density measurements, UV–visible spectroscopy, differential scanning calorimetry (DSC), and 11B and 27Al magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR). Our studies reveal an increase in glass density with increasing lead(II) oxide concentration in pure lead borates and also with addition of silica into 50PbO–50B2O3 glass. 11B MAS NMR measurements determine that the fraction of tetrahedral borons (N4) reaches a maximum for the glass containing 50 mol% of PbO in the PbO–B2O3 glass series and that N4 is sharply reduced upon adding small amounts of Al2O3 into lead borate and lead borosilicate systems. 27Al MAS NMR experiments performed on glasses doped with aluminum oxide show that the Al3+ are tetra-, penta- and hexa-coordinated with oxygen, even without any excess concentration of Al3+ over charge-balancing Pb2+ cations. [5]Al and [6]Al concentrations are found to have unusually high values of up to 30%. The results of UV–visible absorption spectroscopy, DSC and density measurements support the conclusions drawn from the NMR studies, providing a consistent picture of structure–property relations in these glass systems.  相似文献   

14.
Lithium yttrium silicate glasses mixed with different concentrations of Fe2O3 of the composition (40 ? x) Li2O–10Y2O3–50SiO2: x Fe2O3, with x = 0.3, 0.5, 0.8, 1.0, 1.2 and 1.5 (all in mol%) were synthesized. Electrical and dielectric properties including dielectric constant, ε′(ω), loss, tan δ, ac conductivity, σac, impedance spectra as well as electric moduli, M(ω), over a wide continuous frequency range of 40 Hz to 106 Hz and in the low temperature range 100 to 360 K were measured as a function of the concentration of Fe2O3. The dc conductivity is also evaluated in the temperature range 100 … 360 K. The temperature and frequency dispersions of dielectric constant as well as dielectric loss have been analyzed using space charge polarization model. The ac and dc conductivities have exhibited increasing trend with increasing Fe2O3 content beyond 0.5 mol%, whereas the activation energy for the conductivity demonstrated decreasing tendency in this dopant concentration range. Both quantum mechanical tunneling (QMT) and correlated barrier hopping models (CBH) were used for clarification of ac conductivity origin and the corresponding analysis has indicated that CBH model is more appropriate for this glass system. For the better understanding of relaxation dynamics of the electrical properties we have drawn the scaling plots for ac conductivity and also electric moduli. The plots indicated that the relaxation dynamics is independent on temperature but depends on concentration of Fe2O3. The dc conductivity is analyzed using small polaron hoping model. The increase of conductivity with the concentration of Fe2O3 beyond 0.5 mol% is explained in terms of variations in the redox ratio of iron ions in the glass network. The results were further analyzed quantitatively with the support of experimental data from IR, optical absorption and ESR spectral studies. The overall analysis has indicated that Li2O–Y2O3–SiO2 glasses containing more than 0.5 mol% of Fe2O3 are more suitable for achieving good electrical conductivity in these glasses.  相似文献   

15.
Glasses in the (Er2O3)x·(B2O3)(60 ? x)·(ZnO)40 system (0  x  15 mol%) have been prepared by the melt quenching technique. X-ray diffraction, FTIR spectroscopy, UV-VIS spectroscopy and ab initio calculations studies have been employed to study the role of Er2O3 content on the structure of the investigated glass system.X-ray diffraction and infrared spectra of the glasses reveal that the B–O–B bonds may be broken with the creation of new non-bridging oxygen ions facilitating the formation of Er–O–B linkages. The excess of oxygen can be accommodated in the network by the conversion of sp2 planar [BO3] units to the more stable sp3 [BO4] tetrahedral structural units. The linkages of the [BO4] structural units can polymerize in [B3O9]? 9 cyclic trimeric ions which will produce the ErBO3 crystalline phase. An increase of the efficiency corresponding to the 4I15/2 state to 4I11/2 state (4f–4f) transitions of Er+ 3 ions was observed for the erbium oxide richest glasses.Ab initio calculations on the structure of the matrix network show the thermodynamic instability of the [BO4], [ZnO4] and [Zn4O] structural units. Formation of three-coordination oxygens was necessary to compensate shortage of oxygens from zinc ions.  相似文献   

16.
《Journal of Non》2007,353(18-21):1966-1969
The local structures around silicon and phosphorous atoms in R2O–SiO2–P2O5 (R = Li, Na and K) glasses have been investigated using Si and P K-edge XAFS spectroscopy by transmission mode at BL-4 and BL-3 at the synchrotron facility in Ritsumeikan University. As a result of XANES and EXAFS analyzes, six-coordinated silicon atoms were observed in the glasses. The fraction of six-coordinated silicon atom changed with increasing of the concentration of alkali oxide and P2O5. For the change of concentration of alkali oxide, it takes maximum values which are 60% in Li2O, 90% in Na2O and 85% in K2O system at 20 mol% alkali oxide. It gradually increased up for the increase of the concentration of P2O5 to 55% in Li2O, 80% in Na2O and 90% in K2O system. The Si–O inter-atomic distance in the glasses changes from 1.63 to 1.79 Å with increasing the fraction of six-coordinated silicon atom. On the other hand, it was not observed the local structural change around the phosphorous atom.  相似文献   

17.
《Journal of Non》2005,351(40-42):3361-3364
The potential energy landscapes of Li+ ions in Li2O–SiO2 glasses containing 3.3–15 mol% Li2O have been studied using molecular dynamics simulation. It is shown for the first time that the densities of states for Li+ ions follow a nearly universal logarithmic distribution irrespective of the Li concentration. Such a functional form of the ionic density of states is shown to provide an explanation for the experimentally observed logarithmic dependence of the activation energy of dc conductivity on the modifier ion concentration in a wide variety of glasses.  相似文献   

18.
Infrared and impedance measurements have been carried out on high lithium content boron oxide solid electrolytes xLi2O–B2O3, with x = 3.0–4.5, in order to establish the correlation between their structural and electrical properties. The samples are two-phase materials, in which crystalline islands are scattered throughout the vitreous background phase. The evolution of structural and electrical properties with increasing x exhibits a marked differentiation around x = 4.0, which is associated with increasing crystallization in the material.  相似文献   

19.
《Journal of Non》2006,352(21-22):2123-2128
The structure and crystallization behavior of glasses with 25La2O3 · 25B2O3 · 50GeO2 composition, melted in platinum (P glass) and corundum (A glass) crucibles, were studied by DTA, X-ray diffraction and FTIR spectroscopy. The Al2O3 dissolved from corundum crucible in the A glass was estimated to be in the range 5–7 wt%. This alumina content had almost no influence on glass transition temperature but strongly affected the structure and crystallization behavior of the A glass. In fact, the P glass showed good texture-forming ability: high quality textured glass-ceramic plates based on stillwellite-like LaBGeO5 crystals were easily obtained. On the contrary, the presence of alumina stabilized the A glass from which binary phases crystallize first, and only afterwards they are transformed in stillwellite by secondary crystallization: so in this glass texturing is hindered. Crystallization and texturing behavior of P and A glasses were well related to FTIR data. P glass contained both threefold and fourfold coordinated boron while in the A glass the presence of aluminum forced boron to assume almost exclusively threefold co-ordination. Hence the easier crystallization of stillwellite phase and the good textures obtained from the P glass contrary to the A glass, can be well understood since all boron atoms have tetrahedral co-ordination in stillwellite LaBGeO5 crystal.  相似文献   

20.
《Journal of Non》2005,351(49-51):3716-3724
Li2S + GeS2 + GeO2 ternary glasses have been prepared and a wide glass-forming range was obtained. The glass transition temperatures increase with the GeO2 concentration in the glasses. The vibrational modes of both bridging (Ge–S–Ge) and non-bridging (Ge–S) sulfurs are observed in Raman and IR spectra of binary Li2S + GeS2 glasses. Additions of GeO2 to this binary glass increase the bridging oxygen band (Ge–O–Ge) at the expense of decreasing the bridging sulfur band (Ge–S–Ge), whereas the bands associated with the non-bridging sulfurs (Ge–S) remain constant in intensity up to high GeO2 concentrations. At higher concentrations of GeO2 (⩾60%), the non-bridging oxygen band, which is not observed at low and intermediate GeO2 concentrations, appears and grows stronger. From these observations, it is suggested that the added lithium ions favor the non-bridging sulfur sites over the oxygen sites to form non-bridging sulfurs, whereas the added oxygen prefers the higher field strength Ge4+ cation to form bridging Ge–O–Ge bonds. The structural groups in the Li2S + GeS2 + GeO2 glasses that are consistent with results of Raman and IR spectra are described and are used to develop a structural model of these glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号