首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within the framework of Mindlin’s dipolar gradient elasticity, general energy theorems are proved in this work. These are the theorem of minimum potential energy, the theorem of minimum complementary potential energy, a variational principle analogous to that of the Hellinger–Reissner principle in classical theory, two theorems analogous to those of Castigliano and Engesser in classical theory, a uniqueness theorem of the Kirchhoff–Neumann type, and a reciprocal theorem. These results can be of importance to computational methods for analyzing practical problems. In addition, the J-integral of fracture mechanics is derived within the same framework. The new form of the J-integral is identified with the energy release rate at the tip of a growing crack and its path-independence is proved.The theory of dipolar gradient elasticity derives from considerations of microstructure in elastic continua [Mindlin, R.D., 1964. Microstructure in linear elasticity. Arch. Rational Mech. Anal. 16, 51–78] and is appropriate to model materials with periodic structure. According to this theory, the strain-energy density assumes the form of a positive-definite function of the strain (as in classical elasticity) and the second gradient of the displacement (additional term). Specific cases of the general theory considered here are the well-known theory of couple-stress elasticity and the recently popularized theory of strain-gradient elasticity. The latter case is also treated in the present study.  相似文献   

2.
The present study aims at determining the elastic stress and displacement fields around the tips of a finite-length crack in a microstructured solid under remotely applied plane-strain loading (mode I and II cases). The material microstructure is modeled through the Toupin-Mindlin generalized continuum theory of dipolar gradient elasticity. According to this theory, the strain-energy density assumes the form of a positive-definite function of the strain tensor (as in classical elasticity) and the gradient of the strain tensor (additional term). A simple but yet rigorous version of the theory is employed here by considering an isotropic linear expression of the elastic strain-energy density that involves only three material constants (the two Lamé constants and the so-called gradient coefficient). First, a near-tip asymptotic solution is obtained by the Knein-Williams technique. Then, we attack the complete boundary value problem in an effort to obtain a full-field solution. Hypersingular integral equations with a cubic singularity are formulated with the aid of the Fourier transform. These equations are solved by analytical considerations on Hadamard finite-part integrals and a numerical treatment. The results show significant departure from the predictions of standard fracture mechanics. In view of these results, it seems that the classical theory of elasticity is inadequate to analyze crack problems in microstructured materials. Indeed, the present results indicate that the stress distribution ahead of the crack tip exhibits a local maximum that is bounded. Therefore, this maximum value may serve as a measure of the critical stress level at which further advancement of the crack may occur. Also, in the vicinity of the crack tip, the crack-face displacement closes more smoothly as compared to the standard result and the strain field is bounded. Finally, the J-integral (energy release rate) in gradient elasticity was evaluated. A decrease of its value is noticed in comparison with the classical theory. This shows that the gradient theory predicts a strengthening effect since a reduction of crack driving force takes place as the material microstructure becomes more pronounced.  相似文献   

3.
It is the purpose of this work to derive the balance laws (in the Günther–Knowles–Sternberg sense) pertaining to dipolar gradient elasticity. The theory of dipolar gradient (or grade 2) elasticity derives from considerations of microstructure in elastic continua [Mindlin, R.D., 1964. Microstructure in linear elasticity. Arch. Rational Mech. Anal. 16, 51–78] and is appropriate to model materials with periodic structure. According to this theory, the strain–energy density assumes the form of a positive-definite function of the strain (as in classical elasticity) and the gradient of both strain and rotation (additional terms). The balance laws are derived here through a more straightforward procedure than the one usually employed in classical elasticity (i.e. Noether’s theorem). Indeed, the pertinent balance laws are obtained through the action of the standard operators of vector calculus (grad, curl and div) on appropriate forms of the Hamiltonian of the system under consideration. These laws are directly related to the energy release rates in the processes of crack translation, rotation and self-similar expansion. Under certain conditions, they are identified with conservation laws and path-independent integrals are obtained.  相似文献   

4.
In this paper an anisotropic strain-gradient dependent theory of elasticity is exploited, which contains both volumetric and surface energy gradient dependent terms. The theory is applied to the solution of the mode-III crack problem and is extending previous results by Aifantis and co-workers. The two boundary value problems corresponding to the “unclamped” and “clamped” crack tips, respectively, are solved analytically. It turns out that the first problem is physically questionable for some values of the surface energy parameter, whereas the second boundary value problem is leading to a cusping crack, which is consistent with Barenblatt's theory without the incorporation of artificial assumptions.  相似文献   

5.
The problem of sharp notch in couple-stress elasticity is considered in this paper. The problem involves a sharp notch in a body of infinite extent. The body has microstructural properties, which are assumed to be characterized by couple-stress effects. Both symmetric and anti-symmetric loadings at remote regions are considered under plane-strain conditions. The faces of the notch are considered traction free. To determine the field around the tip of the notch, a boundary-layer approach is followed by considering an expansion of the displacements in a form of separated variables in a polar coordinate system. Our analysis is in the spirit of the Knein–Williams and Karp–Karal asymptotic techniques but it is much more involved than its corresponding analysis of standard elasticity due to the complicated boundary value problem (higher-order system of governing PDEs and additional boundary conditions as compared to the standard theory). Eventually, an eigenvalue problem is formulated and this, along with the restriction of a bounded potential energy, provides the asymptotic fields. The cases of a crack and a half-space are analyzed as limit cases of the general notch problem. Certain deviations from the standard classical elasticity results are noted.  相似文献   

6.
The three-dimensional axisymmetric Boussinesq problem of an isotropic half-space subjected to a concentrated normal quasi-static load is studied within the framework of dipolar gradient elasticity involving linear constitutive relations and small strains. Our main concern is to determine possible deviations from the predictions of classical linear elastostatics when a more refined theory is employed to attack the problem. Of special importance is the behavior of the new solution near to the point of application of the load where pathological singularities exist in the classical solution. The use of the theory of gradient elasticity is intended here to model the response of materials with microstructure in a manner that the classical theory cannot afford. A linear version of this theory (as regards both kinematics and constitutive response) results by considering a linear isotropic expression for the strain-energy density that depends on strain gradient terms, in addition to the standard strain terms appearing in classical elasticity and by considering small strains. Through this formulation, a microstructural material constant is introduced, in addition to the standard Lamé constants. The solution method is based on integral transforms and is exact. The present results show significant departure from the predictions of classical elasticity. Indeed, continuous and bounded displacements are predicted at the points of application of the concentrated load. Such a behavior of the displacement field is, of course, more natural than the singular behavior exhibited in the classical solution.  相似文献   

7.
An analog of Cesàro’s formula and several compatibility conditions are given for the three-dimensional and two-dimensional linear micropolar theory of elasticity in the form different from that used in the literature. A number of formulas are obtained to determine the antisymmetric part of the strain (stress) tensor in terms of the symmetric part of the strain tensor and the symmetric part of the bending-torsion (stress and couple-stress) tensor and to determine the antisymmetric part of the bending-torsion (couple-stress) tensor in terms of the symmetric part of the bending-torsion (couplestress) tensor. Some integro-differential equations of motion expressed in terms of the symmetric parts of the stress and couple-stress tensors are proposed for the micropolar theory of elasticity.  相似文献   

8.
The aim of this paper is to study disclinations in the framework of a second strain gradient elasticity theory. This second strain gradient elasticity has been proposed based on the first and second gradients of the strain tensor by Lazar et al. [Lazar, M., Maugin, G.A., Aifantis, E.C., 2006. Dislocations in second strain gradient elasticity. Int. J. Solids Struct. 43, 1787–1817]. Such a theory is an extension of the first strain gradient elasticity [Lazar, M., Maugin, G.A., 2005. Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int. J. Eng. Sci. 43, 1157–1184] with triple stress. By means of the stress function method, the exact analytical solutions for stress and strain fields of straight disclinations in an infinitely extended linear isotropic medium have been found. An important result is that the force stress, double stress and triple stress produced by wedge and twist disclinations are nonsingular. Meanwhile, the corresponding elastic strain and its gradients are also nonsingular. Analytical results indicate that the second strain gradient theory has the capacity of eliminating all unphysical singularities of physical fields.  相似文献   

9.
The technique of distributed dislocations proved to be in the past an effective approach in studying crack problems within classical elasticity. The present work is intended to extend this technique in studying crack problems within couple-stress elasticity, i.e. within a theory accounting for effects of microstructure. This extension is not an obvious one since rotations and couple-stresses are involved in the theory employed to analyze the crack problems. Here, the technique is introduced to study the case of a mode I crack. Due to the nature of the boundary conditions that arise in couple-stress elasticity, the crack is modeled by a continuous distribution of climb dislocations and constrained wedge disclinations (the concept of ‘constrained wedge disclination’ is first introduced in the present work). These distributions create both standard stresses and couple stresses in the body. In particular, it is shown that the mode-I case is governed by a system of coupled singular integral equations with both Cauchy-type and logarithmic kernels. The numerical solution of this system shows that a cracked solid governed by couple-stress elasticity behaves in a more rigid way (having increased stiffness) as compared to a solid governed by classical elasticity. Also, the stress level at the crack-tip region is appreciably higher than the one predicted by classical elasticity.  相似文献   

10.
11.
The bending analysis of a thin rectangular plate is carried out in the framework of the second gradient elasticity. In contrast to the classical plate theory, the gradient elasticity can capture the size effects by introducing internal length. In second gradient elasticity model, two internal lengths are present, and the potential energy function is assumed to be quadratic function in terms of strain, first- and second-order gradient strain. Second gradient theory captures the size effects of a structure with high strain gradients more effectively rather than first strain gradient elasticity. Adopting the Kirchhoff’s theory of plate, the plane stress dimension reduction is applied to the stress field, and the governing equation and possible boundary conditions are derived in a variational approach. The governing partial differential equation can be simplified to the first gradient or classical elasticity by setting first or both internal lengths equal to zero, respectively. The clamped and simply supported boundary conditions are derived from the variational equations. As an example, static, stability and free vibration analyses of a simply supported rectangular plate are presented analytically.  相似文献   

12.
The consideration of higher-order gradient effects in a classical elastodynamic problem is explored in this paper. The problem is the anti-plane shear analogue of the well-known Lamb's problem. It involves the time-harmonic loading of a half-space by a single concentrated anti-plane shear line force applied on the half-space surface. The classical solution of this problem based on standard linear elasticity was first given by J.D. Achenbach and predicts a logarithmically unbounded displacement at the point of application of the load. The latter formulation involves a Helmholtz equation for the out-of-plane displacement subjected to a traction boundary condition. Here, the generalized continuum theory of gradient elasticity with surface energy leads to a fourth-order PDE under traction and double-traction boundary conditions. This theory assumes a form of the strain-energy density containing, in addition to the standard linear-elasticity terms, strain-gradient and surface-energy terms. The present solution, in some contrast with the classical one, predicts bounded displacements everywhere. This may have important implications for more general contact problems and the Boundary-Integral-Equation Method.  相似文献   

13.
14.
The motion of a plane cracked body is studied by assuming that the elasticity tensor is either positive semi-definite or strongly elliptic. It is proved that the basic theorems of linear elastodynamics hold in the class of all motions having bounded velocities near the crack tips.  相似文献   

15.
Non-local theory solution for in-plane shear of through crack   总被引:5,自引:0,他引:5  
A non-local theory of elasticity is applied to obtain the plane strain stress and displacement field for a through crack under in-plane shear by using Schmidt's method. Unlike the classical elasticity solution, a lattice parameter enters into the problem that make the stresses finite at crack tip. Both the angular variations of the circumferential stress and strain energy density function are examined to associate their stationary value with locations of possible fracture initiation. The former criterion predicted a crack initiation angle of 54° from the plane of shear for the non-local solution as compared with about 75° for the classical elasticity solution. The latter criterion based on energy density yields a crack initiation angle of 80° for a Poisson's ratio of 0.28. This is much closer to the value that is predicted by the classical crack tips solution of elasticity.  相似文献   

16.
By relying on the definition of admissible boundary conditions, the principle of virtual work and some kinematical considerations, we establish the skew-symmetric character of the couple-stress tensor in size-dependent continuum representations of matter. This fundamental result, which is independent of the material behavior, resolves all difficulties in developing a consistent couple stress theory. We then develop the corresponding size-dependent theory of small deformations in elastic bodies, including the energy and constitutive relations, displacement formulations, the uniqueness theorem for the corresponding boundary value problem and the reciprocal theorem for linear elasticity theory. Next, we consider the more restrictive case of isotropic materials and present general solutions for two-dimensional problems based on stress functions and for problems of anti-plane deformation. Finally, we examine several boundary value problems within this consistent size-dependent theory of elasticity.  相似文献   

17.
The theory of defects in Cosserat continua is sketched out in strict analogy to the theory of line defects in anisotropic elasticity (Stroh theory). This rewrite of the second order equilibrium equations of elasticity in a 3-dimensional space as first order equations in a 6-dimensional space is analogous to replacing the Laplace equation by the Riemann–Cauchy equations. For generalized plane strain of anisotropic micropolar (Cosserat) elasticity one obtains a 14-dimensional coupled linear system of differential equations of first order and for plane strain of anisotropic micropolar (Cosserat) elasticity we obtain a 6-dimensional coupled linear system of differential equations of first order.  相似文献   

18.
A second strain gradient elasticity theory is proposed based on first and second gradients of the strain tensor. Such a theory is an extension of first strain gradient elasticity with double stresses. In particular, the strain energy depends on the strain tensor and on the first and second gradient terms of it. Using a simplified but straightforward version of this gradient theory, we can connect it with a static version of Eringen’s nonlocal elasticity. For the first time, it is used to study a screw dislocation and an edge dislocation in second strain gradient elasticity. By means of this second gradient theory it is possible to eliminate both strain and stress singularities. Another important result is that we obtain nonsingular expressions for the force stresses, double stresses and triple stresses produced by a straight screw dislocation and a straight edge dislocation. The components of the force stresses and of the triple stresses have maximum values near the dislocation line and are zero there. On the other hand, the double stresses have maximum values at the dislocation line. The main feature is that it is possible to eliminate all unphysical singularities of physical fields, e.g., dislocation density tensor and elastic bend-twist tensor which are still singular in the first strain gradient elasticity.  相似文献   

19.
Summary This paper contains a proof of the uniqueness of solution to the traction boundary value problem in linear elastostatics for a bounded domain containing a crack. Attention is restricted to the two-dimensional case, but the elastic material considered need not be homogeneous or isotropic. In addition to the hypotheses assumed in the standard uniqueness theorem of Kirchhoff, it is required that the displacement field be bounded near the crack tips.
Zusammenfassung Die vorliegende Arbeit gibt einen Beweis für die Eindeutigkeit der Lösung der Traktionsrandwertaufgabe in der zweidimensionalen linearen Elastostatik für ein beschränktes Bereich das einen Riss enthält.


The results communicated in this paper were obtained in the course of an investigation partially supported by Contract N00014-67-A-0094-0020 of the California Institute of Technology with the Office of Naval Research in Washington, D.C.  相似文献   

20.
Formulation of a stress–strain relationship is presented for a granular medium, which is modeled as a first-order strain-gradient continuum. The elastic constants used in the stress–strain relationship are derived as an explicit function of inter-particle stiffness, particle size, and packing density. It can be demonstrated that couple-stress continuum is a subclass of strain-gradient continua. The derived stress–strain relationship is simplified to obtain the expressions of elastic constants for a couple-stress continuum. The derived stress–strain relationship is compared with that of existing theories on strain- gradient models. The effects of inter-particle stiffness and particle size on material constants are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号