首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is proved that if G is a k-connected graph which does not contain K4, then G has an induced cycle C such that G – V(C) is (k − 2)-connected and either every edge of C is k-contractible or C is a triangle. This theorem is a generalization of some known theorems.  相似文献   

2.
An edge e of a k-connected graph G is said to be a removable edge if G?e is still k-connected. A k-connected graph G is said to be a quasi (k+1)-connected if G has no nontrivial k-separator. The existence of removable edges of 3-connected and 4-connected graphs and some properties of quasi k-connected graphs have been investigated [D.A. Holton, B. Jackson, A. Saito, N.C. Wormale, Removable edges in 3-connected graphs, J. Graph Theory 14(4) (1990) 465-473; H. Jiang, J. Su, Minimum degree of minimally quasi (k+1)-connected graphs, J. Math. Study 35 (2002) 187-193; T. Politof, A. Satyanarayana, Minors of quasi 4-connected graphs, Discrete Math. 126 (1994) 245-256; T. Politof, A. Satyanarayana, The structure of quasi 4-connected graphs, Discrete Math. 161 (1996) 217-228; J. Su, The number of removable edges in 3-connected graphs, J. Combin. Theory Ser. B 75(1) (1999) 74-87; J. Yin, Removable edges and constructions of 4-connected graphs, J. Systems Sci. Math. Sci. 19(4) (1999) 434-438]. In this paper, we first investigate the relation between quasi connectivity and removable edges. Based on the relation, the existence of removable edges in k-connected graphs (k?5) is investigated. It is proved that a 5-connected graph has no removable edge if and only if it is isomorphic to K6. For a k-connected graph G such that end vertices of any edge of G have at most k-3 common adjacent vertices, it is also proved that G has a removable edge. Consequently, a recursive construction method of 5-connected graphs is established, that is, any 5-connected graph can be obtained from K6 by a number of θ+-operations. We conjecture that, if k is even, a k-connected graph G without removable edge is isomorphic to either Kk+1 or the graph Hk/2+1 obtained from Kk+2 by removing k/2+1 disjoint edges, and, if k is odd, G is isomorphic to Kk+1.  相似文献   

3.
In this paper, we proved the following result: Let G be a (k+2)-connected, non-(k−3)-apex graph where k≥2. If G contains three k-cliques, say L1, L2, L3, such that |LiLj|≤k−2(1≤i<j≤3), then G contains a Kk+2 as a minor. Note that a graph G is t-apex if GX is planar for some subset XV(G) of order at most t.This theorem generalizes some earlier results by Robertson, Seymour and Thomas [N. Robertson, P.D. Seymour, R. Thomas, Hadwiger conjecture for K6-free graphs, Combinatorica 13 (1993) 279-361.], Kawarabayashi and Toft [K. Kawarabayashi, B. Toft, Any 7-chromatic graph has K7 or K4,4 as a minor, Combinatorica 25 (2005) 327-353] and Kawarabayashi, Luo, Niu and Zhang [K. Kawarabayashi, R. Luo, J. Niu, C.-Q. Zhang, On structure of k-connected graphs without Kk-minor, Europ. J. Combinatorics 26 (2005) 293-308].  相似文献   

4.
An edge e of a k-connected graph G is said to be k-contractible (or simply contractible) if the graph obtained from G by contracting e (i.e., deleting e and identifying its ends, finally, replacing each of the resulting pairs of double edges by a single edge) is still k-connected. In 2002, Kawarabayashi proved that for any odd integer k ? 5, if G is a k-connected graph and G contains no subgraph D = K 1 + (K 2K 1,2), then G has a k-contractible edge. In this paper, by generalizing this result, we prove that for any integer t ? 3 and any odd integer k ? 2t + 1, if a k-connected graph G contains neither K 1 + (K 2K 1,t ), nor K 1 + (2K 2K 1,2), then G has a k-contractible edge.  相似文献   

5.
We have proved that every 3-connected planar graph G either contains a path on k vertices each of which has degree at most 5k or does not contain any path on k vertices; the bound 5k is the best possible. Moreover, for every connected planar graph H other than a path and for every integer m ≥ 3 there is a 3-connected planar graph G such that each copy of H in G contains a vertex of degree at least m.  相似文献   

6.
Let k be a positive integer and let G be a k-connected graph. An edge of G is called k-contractible if its contraction still results in a k-connected graph. A non-complete k-connected graph G is called contraction-critical if G has no k-contractible edge. Let G be a contraction-critical 5-connected graph, Su proved in [J. Su, Vertices of degree 5 in contraction-critical 5-connected graphs, J. Guangxi Normal Univ. 17 (3) (1997) 12-16 (in Chinese)] that each vertex of G is adjacent to at least two vertices of degree 5, and thus G has at least vertices of degree 5. In this paper, we further study the properties of contraction-critical 5-connected graph. In the process, we investigate the structure of the subgraph induced by the vertices of degree 5 of G. As a result, we prove that a contraction-critical 5-connected graph G has at least vertices of degree 5.  相似文献   

7.
We investigate graphs G such that the line graph L(G) is hamiltonian connected if and only if L(G) is 3-connected, and prove that if each 3-edge-cut contains an edge lying in a short cycle of G, then L(G) has the above mentioned property. Our result extends Kriesell’s recent result in [M. Kriesell, All 4-connected line graphs of claw free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) 306-315] that every 4-connected line graph of a claw free graph is hamiltonian connected. Another application of our main result shows that if L(G) does not have an hourglass (a graph isomorphic to K5E(C4), where C4 is an cycle of length 4 in K5) as an induced subgraph, and if every 3-cut of L(G) is not independent, then L(G) is hamiltonian connected if and only if κ(L(G))≥3, which extends a recent result by Kriesell [M. Kriesell, All 4-connected line graphs of claw free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) 306-315] that every 4-connected hourglass free line graph is hamiltonian connected.  相似文献   

8.
A tree with at most m leaves is called an m-ended tree.Kyaw proved that every connected K1,4-free graph withσ4(G)n-1 contains a spanning 3-ended tree.In this paper we obtain a result for k-connected K1,4-free graphs with k 2.Let G be a k-connected K1,4-free graph of order n with k 2.Ifσk+3(G)n+2k-2,then G contains a spanning 3-ended tree.  相似文献   

9.
We say that H has an odd complete minor of order at least l if there are l vertex disjoint trees in H such that every two of them are joined by an edge, and in addition, all the vertices of trees are two-colored in such a way that the edges within the trees are bichromatic, but the edges between trees are monochromatic. Gerards and Seymour conjectured that if a graph has no odd complete minor of order l, then it is (l ? 1)-colorable. This is substantially stronger than the well-known conjecture of Hadwiger. Recently, Geelen et al. proved that there exists a constant c such that any graph with no odd K k -minor is ck√logk-colorable. However, it is not known if there exists an absolute constant c such that any graph with no odd K k -minor is ck-colorable. Motivated by these facts, in this paper, we shall first prove that, for any k, there exists a constant f(k) such that every (496k + 13)-connected graph with at least f(k) vertices has either an odd complete minor of size at least k or a vertex set X of order at most 8k such that G–X is bipartite. Since any bipartite graph does not contain an odd complete minor of size at least three, the second condition is necessary. This is an analogous result of Böhme et al. We also prove that every graph G on n vertices has an odd complete minor of size at least n/2α(G) ? 1, where α(G) denotes the independence number of G. This is an analogous result of Duchet and Meyniel. We obtain a better result for the case α(G)= 3.  相似文献   

10.
An edge e of a k-connected graph G is said to be k-removable if Ge is still k-connected. A subgraph H of a k-connected graph is said to be k-contractible if its contraction results still in a k-connected graph. A k-connected graph with neither removable edge nor contractible subgraph is said to be minor minimally k-connected. In this paper, we show that there is a contractible subgraph in a 5-connected graph which contains a vertex who is not contained in any triangles. Hence, every vertex of minor minimally 5-connected graph is contained in some triangle.  相似文献   

11.
A graph is said to be K1,4-free if it does not contain an induced subgraph isomorphic to K1,4.Let k be an integer with k≥2.We prove that ifG is a K1,4-free graph of order at least 11k-10 with minimum degree at least four,then G contains k vertex-disjoint copies of K1+(K1∪K2).  相似文献   

12.
An edge of a k-connected graph is said to be k-contractible if its contraction results in a k-connected graph. A k-connected non-complete graph with no k-contractible edge, is called contraction critical k-connected. Let G be a contraction critical 5-connected graph, in this paper we show that G has at least ${\frac{1}{2}|G|}$ vertices of degree 5.  相似文献   

13.
The stable Kneser graph SGn,k, n?1, k?0, introduced by Schrijver (1978) [19], is a vertex critical graph with chromatic number k+2, its vertices are certain subsets of a set of cardinality m=2n+k. Björner and de Longueville (2003) [5] have shown that its box complex is homotopy equivalent to a sphere, Hom(K2,SGn,k)?Sk. The dihedral group D2m acts canonically on SGn,k, the group C2 with 2 elements acts on K2. We almost determine the (C2×D2m)-homotopy type of Hom(K2,SGn,k) and use this to prove the following results.The graphs SG2s,4 are homotopy test graphs, i.e. for every graph H and r?0 such that Hom(SG2s,4,H) is (r−1)-connected, the chromatic number χ(H) is at least r+6.If k∉{0,1,2,4,8} and n?N(k) then SGn,k is not a homotopy test graph, i.e. there are a graph G and an r?1 such that Hom(SGn,k,G) is (r−1)-connected and χ(G)<r+k+2.  相似文献   

14.
A graph G is dot-critical if contracting any edge decreases the domination number. Nader Jafari Rad (2009) [3] posed the problem: Is it true that a connected k-dot-critical graph G with G=0? is 2-connected? In this note, we give a family of 1-connected 2k-dot-critical graph with G=0? and show that this problem has a negative answer.  相似文献   

15.
 We prove that each 3-connected plane graph G without triangular or quadrangular faces either contains a k-path P k , a path on k vertices, such that each of its k vertices has degree ≤5/3k in G or does not contain any k-path. We also prove that each 3-connected pentagonal plane graph G which has a k-cycle, a cycle on k vertices, k∈ {5,8,11,14}, contains a k-cycle such that all its vertices have, in G, bounded degrees. Moreover, for all integers k and m, k≥ 3, k∉ {5,8,11,14} and m≥ 3, we present a graph in which every k-cycle contains a vertex of degree at least m. Received: June 29, 1998 Final version received: April 11, 2000  相似文献   

16.
An edge of a k-connected graph is said to be k-contractible if the contraction of the edge results in a k-connected graph. In this paper, we prove that a (K1 + C4)-free minimally k-connected graph has a k-contractible edge, if around each vertex of degree k, there is an edge which is not contained in a triangle. This implies previous two results, one due to Thomassen and the other due to Kawarabayashi.  相似文献   

17.
It is shown that for k ≥ 3, every k-connected graph G with girth at least 4 contains an induced cycle C such that GV(C) is (k − 2)-connected.  相似文献   

18.
Let G be a 5-connected graph not isomorphic to the complete graph K6 with 6 vertices and triangularly embedded in a projective plane P2. Then it will be shown that for any embedding f: GP2, there is a homeomorphism h: P2P2 such that h| G = f. In our terminology, the result states that every 5-connected projective-planar triangulation is uniquely and faithfully embeddable in a projective plane unless it is isomorphic to K6.  相似文献   

19.
Zhiquan Hu  Hao Li 《Discrete Mathematics》2009,309(5):1020-1024
For a graph G, let σ2(G) denote the minimum degree sum of two nonadjacent vertices (when G is complete, we let σ2(G)=). In this paper, we show the following two results: (i) Let G be a graph of order n≥4k+3 with σ2(G)≥n and let F be a matching of size k in G such that GF is 2-connected. Then GF is hamiltonian or GK2+(K2Kn−4) or ; (ii) Let G be a graph of order n≥16k+1 with σ2(G)≥n and let F be a set of k edges of G such that GF is hamiltonian. Then GF is either pancyclic or bipartite. Examples show that first result is the best possible.  相似文献   

20.
Let G be a minimally k-connected graph of order n and size e(G).Mader [4] proved that (i) e(G)?kn?(k+12); (ii) e(G)?k(n?k) if n?3k?2, and the complete bipartite graph Kk,n?k is the only minimally k-connected graph of order; n and size k(n?k) when k?2 and n?3k?1.The purpose of the present paper is to determine all minimally k-connected graphs of low order and maximal size. For each n such that k+1?n?3k?2 we prove e(G)??(n+k)28? and characterize all minimally k-connected graphs of order n and size ?((n+k)28?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号