首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The results of a structural study combining NMR and Raman spectroscopy of several melt-derived glasses in the system Na2O–MgO–CaO–P2O5–SiO2 are presented. The Raman spectra show clear changes in the Si–O–Si vibrational modes (related to the bridging oxygen atoms, BO) and also verify the presence of non-bridging oxygen atoms (NBO), also named terminal oxygens. The intensity of the Si–O–NBO stretching mode depends on the cation concentration. It can be concluded from the NMR studies that the MgO-containing samples have orthophosphate units charge-compensated by Ca2+ and Mg2+. The silicate matrix also contains both types of two-valent cations and consists of Q2 and Q1 units. Similarly, the Na2O-containing samples contain isolated orthophosphate units in a silicate matrix (Q2 and Q3 units), both charge-compensated by mixed cations Ca2+ and Na+. These experimental data were compared with theoretical parameters given by the Stevels model, which is a suitable tool for understanding bioactive behavior of these glasses. Furthermore, results of the in vitro tests carried out in simulated body fluids are presented and compared with both Raman and NMR structural data.  相似文献   

3.
3CaO–Ga2O3–3GeO2 glass excited state absorption spectra-activated with Ho3+ (Ho2O3 – 0.7 wt% content) have been measured and analysed. Up-converted emission channels have been identified and the predicted up-converted emission bands have been registered under Ar ion laser (λ = 488 nm) excitation according to the excited state absorption data. A mechanism of up-converted transitions for Ho3+ centres in this prototype glass network is proposed on the basis of the obtained results.  相似文献   

4.
Photosensitivity of SiO2–Al and SiO2–Na glass samples was probed by means of the induced optical absorption and luminescence as well as by electron spin-resonance (ESR) after irradiation with excimer-laser photons (ArF, 193 nm). Permanent visible darkening in the case of SiO2–Al and transient, life time about one hour, visible darkening in the case of SiO2–Na was found under irradiation at 290 K. No darkening was observed at 80 K for either kind of material. This investigation is dedicated to revealing the electronic processes responsible for photosensitivity at 290 and 80 K. The photosensitivity of both materials is related to impurity defects excited directly in the case of SiO2–Na and/or by recapture of self-trapped holes, which become mobile at high temperature in the case of SiO2–Al. Electrons remain trapped on the localized states formed by oxygen deficient defects.  相似文献   

5.
The new calcium aluminoborate glasses with the composition of CaO–Al2O3–B2O3–RE2O3 (RE = Dy and Tb) were synthesized and the luminescence of Dy3+ and Tb3+ was investigated. The results show that the emission intensity of Tb3+ ion was enhanced when introducing Dy3+ ion into CaO–Al2O3–B2O3–Tb2O3 glass due to the energy transfer processes between Dy3+ and Tb3+. The energy transfer efficiencies, transfer probabilities as well as donor–acceptor critical distances were also calculated. The energy transfer mechanism between Dy3+ and Tb3+ ions is electric dipole–dipole interaction, which can be concluded by both fluorescence decay and emission intensity ratio varieties.  相似文献   

6.
Glasses of the (20 ? x)CaO–xSrO–(20 ? y)Na2O–60B2O3 ? y (CSNB) system with (5  x  15) mol% and y = 0.1 mol% of V2O5 were characterized by X-ray diffraction (XRD), EPR (Electron Paramagnetic Resonance), Optical absorption Spectra and FT-IR (Fourier transform Infrared Spectroscopy) studies. EPR spectra of all the glass samples exhibit resonance signals characterstic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in CSNB glasses were present in octahedral sites with tetragonal compression and belong to C4v symmetry. Spin-Hamiltonian parameters ‘g’ and ‘A’ were evaluated. The Optical band energy (Eopt) and Urbach energy (ΔE) were calculated from their ultra violet edges. By correlating EPR and Optical data the molecular orbital coefficients have been evaluated. IR spectra of these glasses were analyzed in order to identify the contribution of each component to the local structure that determines the physical properties of these glasses.  相似文献   

7.
8.
M.R. Sahar  K. Sulhadi  M.S. Rohani 《Journal of Non》2008,354(12-13):1179-1181
Er3+-doped tellurite glasses of the (80 ? x)TeO2–20ZnO–(x)Er2O3 system (0.5 mol% ? x ? 2.5 mol%) have successfully been made by melt-quenching technique and their structure has been investigated by means of DTA and Raman spectroscopy. The DTA results show the thermal parameters; such as the glass transition temperature (Tg) and crystallization temperature (Tc) were determined. It is found that this system provides a stable and wide glass formation range in which the glass stability around 99–140 °C may be obtained. The Raman spectroscopy used the structural studies in the glass system. Two Raman shift peaks were observed around 640–670 cm?1 and 720–740 cm?1, which correspond to the stretching vibration mode of TeO4 tbp and TeO3 tp, respectively. It is found that the spectral shift in Raman spectra is depending on the Er2O3 content. This evolution is an indication of the changes in the basic unit of the glass structure.  相似文献   

9.
Z. Pan  G. Sekar  R. Akrobetu  R. Mu  S.H. Morgan 《Journal of Non》2012,358(15):1814-1817
Tb3 + and Yb3 + co-doped oxyfluoride glasses were fabricated in a lithium–lanthanum–aluminosilicate matrix (LLAS) by a melt-quench technique. Glass-ceramics were obtained by appropriate heat treatment of the as-prepared glasses. Visible to near-infrared down-conversion luminescence was studied for glass and glass-ceramic samples with different Yb3 + concentrations. It has been found that the luminescence intensity at 940–1020 nm from Yb3 + ions increases while the emission lifetime of Tb3 + ions decreases in the glass-ceramic compared to that in the as-prepared glass, which indicates that the energy transfer efficiency increases in the glass-ceramics compared to that in the as-prepared glass. The down-conversion luminescence also increased for increasing Yb3 + concentration from 1 mol% to 2 mol%, but decreased for the sample with a high Yb3 + co-doping concentration of 8 mol%, which is attributed to the concentration quenching.  相似文献   

10.
A macroporous nanoscale bulk bioactive glass (SiO2–CaO–P2O5 system) was prepared by sol–gel co-template method. Porosimeter analysis showed that the as-synthesized bioactive glasses (BGs) had a porosity of 85% and exhibited a multimodal pore size distribution, nanopores (10–40 nm) and macropores (100 nm–10 μm). Morphological and structural characterizations showed the pores were interconnected with pore walls of about 250 nm in width and 1 μm in length. In vitro bioactivity test indicated that the as-synthesized bulk BGs exhibited faster apatite layer formation capability than the conventional sol–gel BGs. Additionally, the deposited layer was identified as hydroxycarbonate apatite, which is similar to the inorganic part of human bone.  相似文献   

11.
A novel Na2O–K2O–CaO–MgO–SrO–B2O3–P2O5 borophosphate glass fiber is prepared. The thermal properties including differential thermal analysis (DTA) and viscosity measurement of the glass were presented. The tensile strength of the glass fiber is measured. The reaction of the glass fibers in the SBF solution is characterized by XRD, FTIR and SEM. XRD and FTIR indicate that the carbonate hydroxyapatite has formed rapidly on the glass. Cell attachment, spreading and proliferation on the glass are determined by MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay method using Human osteosarcoma MG-63 cells. The bioactivity and biocompatibility of the glass fiber make it a good potential prospect in the field of tissue engineering.  相似文献   

12.
The local structure of phosphorus and silicon in the molten CaO–SiO2–PO2.5 slag system was investigated by magic angle spinning nuclear magnetic resonance (MAS-NMR). The 31P MAS-NMR spectra revealed that phosphorus was present primarily as the monophosphate complex ion PO43?, with a small amount of diphosphate ion also present. Their relative ratio to total phosphorus was independent of the phosphate concentration of the sample. In the case of the 29Si MAS-NMR, the mean number of the non-bridging oxygen atoms associated with tetrahedrally coordinated silicon decreased as the phosphate concentration increased at a fixed CaO/SiO2 ratio. This indicates that the nonbridging oxygen atoms around the silicon were replaced by bridging oxygen atoms around the phosphorus as the phosphate concentration in the samples increased.To elucidate the basicity dependence of the structure of slag, the relationship between the structure and optical basicity was also investigated. The relative ratio of Qn (Qn means the silicon atoms tetrahedrally bonded with “n” number of bridging oxygen atoms) strongly depends on the optical basicity. These optical basicity dependencies of the structures of phosphorus and silicon can be explained clearly by the basicity equalization concept (Duffy and Ingram, 1976) [12].  相似文献   

13.
B. Mirhadi  B. Mehdikhani 《Journal of Non》2011,357(22-23):3711-3716
The effects of chromium oxide on the crystallization behavior of glass compositions in the calcium, zirconium and silicon oxides system were investigated by differential thermal analysis, X-ray diffraction and scanning electron microscopic. Results indicate that crystallization is predominantly controlled by a surface nucleation mechanism, even though a partial bulk nucleation has been encountered in compositions containing more than 1.0 mol% of doping oxide. The effect of heating rate on differential thermal analysis curves was studied in order to investigate nucleation mechanisms and to extract the corresponding crystal growth activation energies Ec for the different crystalline phases. Activation energy (Ec) was found to be 490 ± 5 kJ/mol for 5.0 mol% chromium oxide in glasses. The most suitable nucleation temperature was determined as 810 °C for the above mentioned glass. The results of this study have highlighted that a small percentage of chromium oxide strongly affects the crystal formation thereby reducing the time and temperature of the thermal treatment and enhancing the degree of crystallization of calcium, zirconium and silicon oxides glasses.  相似文献   

14.
The 70Li2S · (30 ? x)P2S5 · xP2O5 (mol%) oxysulfide glasses were prepared by the melt quenching method. The glasses were prepared in the composition range 0  x 10. The glass–ceramics were prepared by heating the glasses over crystallization temperatures. The POnS3?n (n = 1–3) oxysulfide units were produced in the glasses and glass–ceramics by partial substituting P2O5 for P2S5. In particular, the P2OS64? unit would be produced by substituting a small amount of P2O5 for P2S5. The oxygen atoms were incorporated into the Li7P3S11 crystal structure because the diffraction peaks of the oxysulfide glass–ceramic shifted to the higher angle side. The glass–ceramic with 3 mol% of P2O5 exhibited the highest conductivity of 3.0 × 10?3 S cm?1 and the lowest activation energy for conduction of 16 kJ mol?1. The P2OS64? dimer units in the oxygen-incorporated Li7P3S11 crystal would improve conductive behavior of the Li2S–P2S5 glass–ceramics.  相似文献   

15.
B.B. Das 《Journal of Non》2009,355(31-33):1663-1665
Synthesis of the xCuO–(1 ? x)Bi2O3 (0.5 ? x ? 0.9) (C1–C5: x = 0.5, 0.6, 0.7, 0.8, 0.9) glasses was done via nitrate–citrate gel route. Glassy phase is ascertained by XRD studies. Magnetic susceptibility results in the range 4.2–400 K show weak paramagnetic nature with exchange integrals ~0.024–0.13 eV in the glasses. The electron paramagnetic resonance (EPR) in the range 4.2–363 K shows g  2.0 and the trend of the g-matrix elements g|| > g > ge for the glasses C1–C5 at 4.2 K are due to the Cu2+ (3d9) paramagnetic site in the glasses which is in a tetragonally elongated octahedron [O1/2–CuO4/2–O1/2] having D4h symmetry. IR spectroscopic results show the presence of octahedron [BiO6/2]3? and [CuO6/2]4? units and pyramidal [BiO2/2O]? unit in the glasses.  相似文献   

16.
Sol–gel technique has several benefits for the preparation of glass, and morphology can be better controlled compared to conventional methods. In this research, new sol–gel derived bioactive glasses based on SiO2–CaO–SrO–P2O5 dried-gel were synthesized and characterized. Herein, a series of 58S bioactive glasses with the composition of 60%SiO2–36%(CaO/SrO)–4%P2O5 (mol%) were synthesized, and the effect of adding strontium (Sr) to the glass structure SiO2–(1-x)CaO–xSrO–P2O5 (where x = 0, 0.5, 0.1, 0.25, 0.5 and 1) was investigated by gradually substitution of Sr with calcium (Ca). The obtained results indicated that the Sr free sample totally takes amorphous state indicative of the internal disorder, glassy nature and non-crystalline states of this material. Surprisingly, after further addition of Sr to the glass structure, the X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) micrographs showed unexpected significant rod-like crystal fibers, and the major diffraction peaks of Sr(NO3)2, SrCO3 and Sr2Si2O4 became sharper and more apparent up to the final addition of Sr. The complicated and contradictory results underscore the need for better knowledge of how impurities act upon by growing rod-like crystals. In addition, totally understanding the effect of Sr on the morphology of samples from the bottom up is a daunting challenge.  相似文献   

17.
Crystallography Reports - Sm1 – ySryF3 – y (0 < y ≤ 0.31) crystals have been grown from melt by directional solidification in a...  相似文献   

18.
Gao Tang  Cunming Liu  Zhiyong Yang  Lan Luo  Wei Chen 《Journal of Non》2009,355(31-33):1585-1589
Microstructure of the chalcohalide glasses: GeSe2–Ga2Se3–CsI and GeSe2–Ga2Se3–PbI2 ternary system were investigated by Raman spectra, lifetime of Dy3+ infrared emission and glass transition temperature (Tg). The evolution of the Raman spectra shows that the fundamental structural groups of these studied glasses consist of [Ge(Ga)Se4] tetrahedral and some complex structure units [Ge(Ga)IxSe4?x](x = 1–4). The x value varied when the different iodide was added in Ge–Ga–Se matrix. For GeSe2–Ga2Se3–CsI glasses, the [Ge(Ga)IxSe4?x](x = 1–4) mixed-anion tetrahedral and [Ga2I7]? units occurred. For GeSe2–Ga2Se3–PbI2 glasses, the [Ge(Ga)I2Se2], [Ge(Ga)I3Se] units can be formed. The changes of Dy3+ infrared emission lifetime and Tg support the results. Additionally, [PbIn] structural units will be formed in GeSe2–Ga2Se3–PbI2 glasses due to high form-ability of these units when the PbI2 content is high.  相似文献   

19.
20.
Pr3 +–Yb3 +‐codoped fluoride glass waveguides have been synthesized by Physical Vapor Deposition (PVD). A study of the evaporation of ternary mixture of rare earth fluorides LaF3–PrF3–YbF3 has been necessary to control the doping of the evaporated glass. Optical and spectroscopic studies have been performed in both bulk and waveguide configuration. Red, orange, green and blue emissions in Pr3 +–Yb3 +-codoped lanthanum flurozirconate glasses called ZLAG have been investigated, by exciting in the blue or in the infra-red at 980 nm. Bulk samples with different dopant concentrations (0.25–3 mol% for Pr3 + and 0–5 mol% for Yb3 +) have been studied in order to optimize the Pr3 + emission. It has been shown than the luminescence is similar in bulk and waveguide upon excitation at 980 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号