首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A computational study at different levels of theory was performed for the not yet synthesized phosphastannaallenes >SnCP– in order to evaluate the strength of the SnC bond, the main postulated factor to stabilize such species, and the geometry in R2SnCPR derivatives. The influence of the substituents with various electronic effects (H, Me, Ph, F, Cl, OMe, SiMe3) at the Sn or P atoms of the SnCP unit on the SnC bond order was evaluated in the quest for a substituent that would stabilize the phosphastannaallenic unit. PC bond orders have also been calculated.  相似文献   

2.
The reaction of RuTp(COD)Cl (1) with PR3 (PR3 = PPh2iPr, PiPr3, PPh3) and propargylic alcohols HCCCPh2OH, HCCCFc2OH (Fc = ferrocenyl), and HCCC(Ph)MeOH has been studied.In the case of PR3 = PPh2iPr, PiPr3 and HCCCPh2OH, the 3-hydroxyvinylidene complexes RuTp(PPh2iPr)(CCHC(Ph)2OH)Cl (2a) and RuTp(PiPr3)(CCHC(Ph2)OH)Cl (2b) were isolated.With PR3 = PPh2iPr and HCCCFc2OH as well as with PR3 = PPh3 and HCCCPh2OH dehydration takes place affording the allenylidene complexes RuTp(PPh2iPr)(CCCFc2)Cl (3b) and RuTp(PPh3)(CCCPh2)Cl (3c).Similarly, with PPh2iPr and HCCC(Ph)MeOH rapid elimination of water results in the formation of the vinylvinylidene complex RuTp(PPh2iPr)(CCHC(Ph)CH2)Cl (4).In contrast to the reactions of the RuTp(PR3)Cl fragment with propargylic alcohols, with HCC(CH2)nOH (n = 2, 3, 4, 5) six-, and seven-membered cyclic oxycarbene complexes RuTp(PR3)(C4H6O)Cl (5), RuTp(PR3)(C5H8O)Cl (6), and RuTp(PR3)(C6H10O)Cl (7) are obtained. On the other hand, with 1-ethynylcyclohexanol the vinylvinylidene complex RuTp(PPh2iPr)(CCHC6H9)Cl (8) is formed. The reaction of the allenylidene complexes 3ac with acid has been investigated. Addition of CF3COOH to a solution of 3ac resulted in the reversible formation of the novel RuTp vinylcarbyne complexes [RuTp(PPh2iPr)(C–CHCPh2)Cl]+ (9a), [RuTp(PPh2iPr)(C–CHCFc2)Cl]+ (9b), and [RuTp(PPh3)(C–CHCPh2)Cl]+ (9c). The structures of 3a, 3b, and 5b have been determined by X-ray crystallography.  相似文献   

3.
This paper studied the mechanism of the alkene insertion elementary step in the asymmetric hydroformylation (AHF) catalyzed by RhH(CO)2[(R,S)-Yanphos] using four alkene substrates (CH2=CH- Ph, CH2=CH-Ph-(p)-Me, CH2=CH-C(==O)OCH3 and CH2=CH-OC(=O)-Ph, abbreviated as A1-A4). Interestingly, the equatorial vertical coordination mode (A mode) with respect to the Rh center was found for AI and A2 but not for A3 and A4, although the equatorial in-plane coordination mode (E mode) was found for A1 -A4. The relative energy of the E mode of the -q2-intermediates is lower than that of the A mode. In the alkene insertion step, Path 1 is more favorable than Path 2 for this system. As for AI and A2, there could be a transformation between 2eq and 2ax.  相似文献   

4.
《Comptes Rendus Chimie》2016,19(3):320-332
1,3-dipolar cycloaddition of diaryldiazomethanes Ar2CN2 across Cl3C–CHN–CO2Et 1 yields Δ3-1,2,4-triazolines 2. Thermolysis of 2 leads, via transient azomethine ylides 3, to diaryldichloroazabutadienes [Ar(Ar')CN–CHCCl2] 4. Treatment of 4a (Ar = Ar' = C6H5) and 4c (Ar = Ar' = p-ClC6H4) with NaSR in DMF yields 2-azabutadienes [Ar2CN–C(H)C(SR)2] 5. In contrast, nucleophilic attack of NaStBu on 4 affords azadienic dithioethers [Ar2CN–C(StBu)C(H)(StBu)] (7a Ar = C6H5; 7b Ar' = p-ClC6H4). The reaction of 4a with NaSEt conducted in neat EtSH produces [Ph2CN–C(H)(SEt)–CCl2H] 8, which after dehydrochloration by NaOMe and subsequent addition of NaSEt is converted to [Ph2CN–C(SEt)C(H)(SEt)] 7c. Upon the reaction of 4c with NaSiPr, the intermediate dithioether [(p-ClC6H4)2CN–CHC(SiPr)2] 5k is converted to tetrakisthioether [(p-iPrSC6H4)2CN–CHC(SiPr)2] 6. Treatment of 4a with the sodium salt of piperidine leads to [Ph2CN–CHC(NC5H10)2] 10. The coordination of 6 on CuBr affords the macrocyclic dinuclear Cu(I) complex 11. The crystal structures of 5i, 7a,b, 10 and 11 have been determined by X-ray diffraction.  相似文献   

5.
An overview is given on synthesis and structures of new bidentate phosphaalkene ligands [(RMe2Si)2CP]2E (E = O, NR, N?) and (RMe2Si)2CPN(R′)PR′′2. Exceptional properties of these ligands, extending beyond predictable properties of phosphaalkenes are: (i) the NSi bond cleavage of [(iPrMe2Si)2CP]2NSiMe3 with AuI and RhI chloro complexes under mild conditions leading to binuclear complexes of the 6π-delocalised imidobisphosphaalkene anion [(iPrMe2Si)2CP]2N?, and (ii) the chlorotropic formation of molecular 1:2 PdII and PtII metallochloroylid complexes with novel ylid-type ligands [(RMe2Si)2CP(Cl)N(R)PR2]?, and the transformation of a P-platina-P-chloroylid complex into a C-platina phosphaalkene by intramolecular chlorosilane elimination. Properties of the heavier congeners [(RMe2Si)2CP]2E (E = S, Se, Te, PR, P?, As?) and (RMe2Si)2CPEPR′′2 (E = S, Se, Te) are also described.  相似文献   

6.
Treatment of the complex [Ru{C(CCPh)CHPh}Cl(CO)(PPh3)2] (1) with one equivalent of CNR(R =tBu, C6H3Me2-2,6) gives [Ru{C(CCPh)CHPh}Cl(CNR)(CO)(PPh3)2]. Addition of a further equivalent of isonitrile and [NH4]PF6 leads to the salts [Ru{C(CCPh)CHPh}Cl(CNR)2(CO)(PPh3)2]PF6 and the mixed species [Ru{C(CCPh) CHPh}(CO)(CNtBu)(CNC6H3Me2-2,6)(PPh3)2]PF6. The related [Ru{C(CCPh)CHPh}(CNt(CO)2  相似文献   

7.
Hemilability and nonrigidity in a series of mixed P,PS donor ligands has been studied in the complexes [Pd(P,PS)Cl2], [Pd(η3-C3H5)(P,PS)][SbF6], and [Rh(cod)(P,PS)][SbF6] (P,PS = Ph2P-Q-P(S)Ph2). The effect of bite angle, the rigidity of the ligand backbone, and the role of the ancillary ligands are discussed.  相似文献   

8.
《Tetrahedron: Asymmetry》2007,18(19):2365-2376
Stereoselective [3+2] cycloadditions of trimethylenemethane (TMM) to the exocyclic CO and CN double bonds of (1S,3EZ,4R)-3-arylimino-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ones gave the corresponding spiro[bicyclo[2.2.1]heptane-2,2′-furan] and spiro[bicyclo[2.2.1]heptane-3,2′-pyrrolidine] derivatives. Further stereoselective reductions of the CN or CO bond in these cycloadducts furnished new chiral amines, diamines, and a new aminoalcohol. All cycloadditions and reductions of the CN double bonds took place from the less hindered endo-face of the (1S,3EZ,4R)-3-arylimino-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ones, exclusively, thus giving the corresponding products in 100% de. The structures were determined by NMR, NOESY spectroscopy, and by X-ray diffraction.  相似文献   

9.
Pentacarbonyl dimethylamino(methoxy)allenylidene complexes of chromium and tungsten, [(CO)5MCCC(NMe2)OMe] (M = Cr (1a), W (1b)), react with 1,3-bidentate nucleophiles such as amidines and guanidine, H2N–C(NH)R (R = Ph, C6H4NH2-4, C6H4NO2-3, NH2), by displacing the methoxy substituent to give exclusively dimethylamino(imino)-allenylidene complexes, [(CO)5MCCC{NC(NH2)R}NMe2] (2a5a, 2b). Treatment of the chromium complexes 2a5a with catalytic amounts of hydrochloric acid or HBF4 gives rise to an intramolecular cyclization. Addition of the terminal NH2 substituent to the Cα–Cβ bond of the allenylidene chain affords pyrimidinylidene complexes 69 in high yield. In contrast to the chromium complexes 2a5a, the corresponding tungsten complex 2b could not be induced to cyclize due to the lower electrophilicity of the α-carbon atom in 2b. The dimethylamino(phenyl)allenylidene complex [(CO)5CrCCC(NMe2)Ph] (10) reacts with benzamidine or guanidine similarly to 1a. However, the second reaction step – cyclization to give pyrimidinylidene complexes – proceeds much faster. Therefore, the formation of an imino(phenyl)allenylidene complex as an intermediate is established only by IR spectroscopy. The analogous reaction of 10 with 3-amino-5-methylpyrazole affords, via a formal [3+3]-cycloaddition, a pyrazolo[1,5a]pyrimidinylidene complex 13. Compound 13 is obtained as two isomers differing in the relative position of the N-bound proton (1H or 4H). The related reaction of 10 with thioacetamide yields a thiazinylidene complex and additionally an alkenyl(amino)carbene complex.  相似文献   

10.
Although 1,1-bis(trifluoromethyl)butadiene-1,3 (1) reacts with dimethylamine with selective formation of 1,4-adduct [trans-(CF3)2CHCHCHCH2N(CH3)2], halogenation of 1 proceeds with predominant formation (>92%) of 1,2-adducts (CF3)2CCHCHXCH2X (X = Cl or Br). Electrophilic conjugated addition of “ClF” or “BrF” to 1 proceeds exclusively with the formation of 1,2-adducts (CF3)2CCHCHFCH2X (major) and (CF3)2CCHCHXCH2F (X = Cl or Br). Difluorocarbene adds selectively to CHCH2 moiety of 1 forming thermally stable vinylcyclopropane. In Diels-Alder reaction with linear or cyclic dienes (butadienes, cyclopentadiene, cyclohexadiene-1,3) and quadricyclane compound 1 behaves as dienophile providing for the reaction electron-deficient CHCH2 bond. The relative rate of cycloaddition of 1 and other fluoroolefins to quadricyclane, measured by high temperature NMR, indicates that (CF3)2CCH acts as very strong electron-withdrawing substituent. Synthetic utility of products based on 1 was also demonstrated.  相似文献   

11.
By a combination of cyclodehydration of N-acyl amino acids with N,N′-diisopropylcarbodiimide (DIC) and non-classical Wittig olefination of the resultant 5(4H)-oxazolones with Ph3PCHCN and Ph3PCHCOOEt, 5-oxazoleacetonitriles and 5-oxazoleacetates were synthesized in one-pot in 41–85% and 57–70% yields, respectively.  相似文献   

12.
Reaction of [WNAr(CH2tBu)2(CHtBu)] (Ar = 2,6-iPrC6H3) with silica partially dehydoxylated at 200 °C does not lead only to the expected bisgrafted [(SiO)2WNAr(CHtBu)] species, but also surface reaction intermediates such as [(SiO)2WNAr(CH2tBu)2]. All these species were characterized by infrared spectroscopy, 1D and 2D solid state NMR, elemental analysis and molecular models obtained by using silsesquioxanes. While a mixture of several surface species, the resulting material displays high activity in the olefin metathesis.  相似文献   

13.
In this work, both the intermolecular and intramolecular hydrogen bonding of 3-aminophthalimide (3AP) dimer complex in the electronically excited state have been investigated theoretically using the time-dependent density functional theory (TDDFT) method. The calculated infrared spectrum of the hydrogen-bonded 3AP dimer complex for the S1 state shows that the CO and H–N bonds involved in the intramolecular hydrogen bond C3O5?H8–N6 and intermolecular hydrogen bond C1O4?H7′–N2′ which are markedly red-shifted compared with those predicted for the ground state. The calculated length of the two hydrogen bonds C3O5?H8–N6 and C1O4?H7′–N2′ are significantly shorter in S1 state than in the ground state. However, the bond lengths of the intramolecular hydrogen bond C3′O5?H8′–N6′ and intermolecular hydrogen bond C1′O4′?H7–N2 nearly unchanged upon electronic excitation to the S1 state. Thus, the intramolecular hydrogen bond C3O5?H8–N6 and intermolecular hydrogen bond C1O4?H7′–N2′ of the hydrogen-bonded 3AP dimer complex are stronger in the electronically excited state than in the ground state. Moreover, it has been demonstrated that the excited-state proton transfer reaction is facilitated by the electronic excited-state hydrogen bond strengthening.  相似文献   

14.
The syntheses of [Au(CC-4-C6H4CC-4-C6H4NN-4-C6H4NO2)(PPh3)] (3), trans-[Ru(CC-4-C6H4-CC-4-C6H4NN-4-C6H4NO2)Cl(dppm)2] (4), [Ru(CC-4-C6H4CC-4-C6H4NN-4-C6H4NO2)(dppe)(η-C5Me5)] (5), and [Ni(CC-4-C6H4NN-4-C6H4NO2)(PPh3)(η-C5H5)] (6) are reported, together with a single-crystal X-ray diffraction study of 4. Quadratic nonlinearities for 36 and [Ru(CC-4-C6H4NO2)(dppe)(η-C5Me5)] (7) have been determined at 1.064 μm and 1.300 μm by the hyper-Rayleigh scattering (HRS) technique, comparison to related complexes revealing that β values increase on introduction of azo group and π-system lengthening.  相似文献   

15.
Two-dimensional (2D) correlation infrared (IR) spectroscopy has been applied to explore the effect of hydrogen bondings (HBs) on the structure of mesophase in the dissymmetrical 4-nitrobenzohydrazide derivative, N-(4-cetyloxybenzoyl)-N′-(4′-nitrobenzoyl) hydrazine (C16-NO2). The strength and species of HBs as well as the heat-induced structural variations in mesophase have been investigated. It has been found from 2D correlation IR spectroscopy that the sequential order of changes in the different functionalities in the course of liquid crystalline formation is that, firstly, the alkyl chain changes from the significant population of the trans conformation to the significant population of gauche conformation; then, the intermolecular HB between CO and NH groups is weakened, some even being broken, and consequently, the intermolecular distance is enlarged; finally, the skeleton of phenyl ring has enough space to change their conformation to weaken the π–π stacking interaction. In addition, besides a few free and some medium bonded NH and CO groups, strongly bonded NH and CO groups still predominantly exist in the mesophase.  相似文献   

16.
The mixed ruthenium(II) complexes trans-[RuCl2(PPh3)2(bipy)] (1), trans-[RuCl2(PPh3)2(Me2bipy)](2), cis-[RuCl2(dcype)(bipy)](3), cis-[RuCl2(dcype)(Me2bipy)](4) (PPh3 = triphenylphosphine, dcype = 1,2-bis(dicyclohexylphosphino)ethane, bipy = 2,2′-bipyridine, Me2bipy = 4,4′-dimethyl-2,2′-bipyridine) were used as precursors to synthesize the associated vinylidene complexes. The complexes [RuCl(CCHPh)(PPh3)2(bipy)]PF6 (5), [RuCl(CCHPh)(PPh3)2(Me2bipy)]PF6 (6), [RuCl(CCHPh)(dcype)(bipy)]PF6 (7), [RuCl(CCHPh)(dcype)(bipy)]PF6 (8) were characterized and their spectral, electrochemical, photochemical and photophysical properties were examined. The emission assigned to the π–π1 excited state from the vinylidene ligand is irradiation wavelength (340, 400, 430 nm) and solvent (CH2Cl2, CH3CN, EtOH/MeOH) dependent. The cyclic voltammograms of (6) and (7) show a reversible metal oxidation peak and two successive ligand reductions in the +1.5-(−0.64) V range. The reduction of the vinylidene leads to the formation of the acetylide complex, but due the hydrogen abstraction the process is irreversible. The studies described here suggest that for practical applications such as functional materials, nonlinear optics, building blocks and supramolecular photochemistry.  相似文献   

17.
The mixed ruthenium(II) complexes trans-[RuCl2(PPh3)2(bipy)] (1), trans-[RuCl2(PPh3)2(Me2bipy)](2), cis-[RuCl2(dcype)(bipy)](3), cis-[RuCl2(dcype)(Me2bipy)](4) (PPh3 = triphenylphosphine, dcype = 1,2-bis(dicyclohexylphosphino)ethane, bipy = 2,2′-bipyridine, Me2bipy = 4,4′-dimethyl-2,2′-bipyridine) were used as precursors to synthesize the associated vinylidene complexes. The complexes [RuCl(CCHPh)(PPh3)2(bipy)]PF6 (5), [RuCl(CCHPh)(PPh3)2(Me2bipy)]PF6 (6), [RuCl(CCHPh)(dcype)(bipy)]PF6 (7), [RuCl(CCHPh)(dcype)(bipy)]PF6 (8) were characterized and their spectral, electrochemical, photochemical and photophysical properties were examined. The emission assigned to the π–π1 excited state from the vinylidene ligand is irradiation wavelength (340, 400, 430 nm) and solvent (CH2Cl2, CH3CN, EtOH/MeOH) dependent. The cyclic voltammograms of (6) and (7) show a reversible metal oxidation peak and two successive ligand reductions in the +1.5-(?0.64) V range. The reduction of the vinylidene leads to the formation of the acetylide complex, but due the hydrogen abstraction the process is irreversible. The studies described here suggest that for practical applications such as functional materials, nonlinear optics, building blocks and supramolecular photochemistry.  相似文献   

18.
《Vibrational Spectroscopy》2006,40(1):142-147
A novel compound, (4,4′-Hbpy)2(K2Mo8O26) 1 (bpy = bipydine), was synthesized by hydrothermal method and characterized by X-ray single analysis, thermalgravimetric analysis, one-dimensional (1D) infrared spectroscopy and two-dimensional (2D) correlation infrared spectroscopy under thermal perturbation. In the compound 1, the [Mo8O26] units link to potassium ions to form layer structure, and the protonated 4,4′-bpy are linked to chains by hydrogen bonds. The 2D IR correlation spectroscopy study indicates that the intensity changes of MoO, NH and CC stretching vibration are sensitive to the temperature variation, and the intensity changes of asymmetry stretching vibration of the terminal MoO occur prior to that of terminal MoO linked by K atom. At the same time, the peaks of asymmetry stretching vibrations of the terminal MoO and the stretching vibrations of NH split into two peaks respectively in 2D IR correlation spectroscopy.  相似文献   

19.
A set of small radicals SiF, SiCl, F–CO, CN–O, O3H, NO3, CH2NC, CF3O, and O3 exhibit pronounced discrepancies between different experimental as well as experimental and calculated values of the respective enthalpies of formation ΔfHo(298.15). For stable molecules, this quantity is well established and reliable values are available. However, for free radicals and other short-lived intermediates, the situation is not nearly as favorable. Consequently, critical evaluation of thermodynamic properties of free radicals is necessary, both originating from experiment and computation. Calculated enthalpies of formation for the above systems are based on the ab initio methods G3MP2B3 and CCSD(T)–CBS (W1U) for which mean absolute deviations are known.  相似文献   

20.
The molecular structure of caffeine (3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione) was determined by means of gas electron diffraction. The nozzle temperature was 185 °C. The results of MP2 and B3LYP calculations with the 6-31G7 basis set were used as supporting information. These calculations predicted that caffeine has only one conformer and some of the methyl groups perform low frequency internal rotation. The electron diffraction data were analyzed on this basis. The determined structural parameters (rg and ∠α) of caffeine are as follows: <r(NC)ring> = 1.382(3) Å; r(CC) = 1.382(←) Å; r(CC) = 1.446(18) Å; r(CN) = 1.297(11) Å; <r(NCmethyl)> = 1.459(13) Å; <r(CO)> = 1.206(5) Å; <r(CH)> = 1.085(11) Å; ∠N1C2N3 = 116.5(11)°; ∠N3C4C5 = 121. 5(13)°; ∠C4C5C6 = 122.9(10)°; ∠C4C5N7 = 104.7(14)°; ∠N9–C4=C5 = 111.6(10)°; <∠NCHmethyl> = 108.5(28)°. Angle brackets denote average values; parenthesized values are the estimated limits of error (3σ) referring to the last significant digit; left arrow in parentheses means that this parameter is bound to the preceding one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号