首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a pair (s, t) of vertices of a graph G, let λG(s, t) denote the maximal number of edge-disjoint paths between s and t. Let (s1, t1), (s2, t2), (s3, t3) be pairs of vertices of G and k > 2. It is shown that if λG(si, ti) ≥ 2k + 1 for each i = 1, 2, 3, then there exist 2k + 1 edge-disjoint paths such that one joins s1 and t1, another joins s2 and t2 and the others join s3 and t3. As a corollary, every (2k + 1)-edge-connected graph is weakly (k + 2)-linked for k ≥ 2, where a graph is weakly k-linked if for any k vertex pairs (si, ti), 1 ≤ ik, there exist k edge-disjoint paths P1, P2,…, Pk such that Pi joins si and ti for i = 1, 2,…, k.  相似文献   

2.
Suppose that G is a graph, and (si,ti) (1≤ik) are pairs of vertices; and that each edge has a integer-valued capacity (≥0), and that qi≥0 (1≤ik) are integer-valued demands. When is there a flow for each i, between si and ti and of value qi, such that the total flow through each edge does not exceed its capacity? Ford and Fulkerson solved this when k=1, and Hu when k=2. We solve it for general values of k, when G is planar and can be drawn so that s1,…, sl, t1, …, tl,…,tl are all on the boundary of a face and sl+1, …,Sk, tl+1,…,tk are all on the boundary of the infinite face or when t1=?=tl and G is planar and can be drawn so that sl+1,…,sk, t1,…,tk are all on the boundary of the infinite face. This extends a theorem of Okamura and Seymour.  相似文献   

3.
If G is a graph with p vertices and at least one edge, we set φ (G) = m n max |f(u) ? f(v)|, where the maximum is taken over all edges uv and the minimum over all one-to-one mappings f : V(G) → {1, 2, …, p}: V(G) denotes the set of vertices of G.Pn will denote a path of length n whose vertices are integers 1, 2, …, n with i adjacent to j if and only if |i ? j| = 1. Pm × Pn will denote a graph whose vertices are elements of {1, 2, …, m} × {1, 2, …, n} and in which (i, j), (r, s) are adjacent whenever either i = r and |j ? s| = 1 or j = s and |i ? r| = 1.Theorem.If max(m, n) ? 2, thenφ(Pm × Pn) = min(m, n).  相似文献   

4.
A graph is k-linked if for every set of 2k distinct vertices {s1,…,sk,t1,…,tk} there exist disjoint paths P1,…,Pk such that the endpoints of Pi are si and ti. We prove every 6-connected graph on n vertices with 5n−14 edges is 3-linked. This is optimal, in that there exist 6-connected graphs on n vertices with 5n−15 edges that are not 3-linked for arbitrarily large values of n.  相似文献   

5.
Suppose thatG is an undirected graph whose edges have nonnegative integer-valued lengthsl(e), and that {s 1,t 1},?, {s m ,t m } are pairs of its vertices. Can one assign nonnegative weights to the cuts ofG such that, for each edgee, the total weight of cuts containinge does not exceedl(e) and, for eachi, the total weight of cuts ‘separating’s i andt i is equal to the distance (with respect tol) betweens i andt i ? Using linear programming duality, it follows from Papernov's multicommodity flow theorem that the answer is affirmative if the graph induced by the pairs {s 1,t 1},?, {s m ,t m } is one of the following: (i) the complete graph with four vertices, (ii) the circuit with five vertices, (iii) a union of two stars. We prove that if, in addition, each circuit inG has an even length (with respect tol) then there exists a suitable weighting of the cuts with the weights integer-valued; moreover, an algorithm of complexity O(n 3) (n is the number of vertices ofG) is developed for solving such a problem. Also a class of metrics decomposable into a nonnegative linear combination of cut-metrics is described, and it is shown that the separation problem for cut cones isNP-hard.  相似文献   

6.
It is known that if G is a connected simple graph, then G3 is Hamiltonian (in fact, Hamilton-connected). A simple graph is k-ordered Hamiltonian if for any sequence v1, v2,…,vk of k vertices there is a Hamiltonian cycle containing these vertices in the given order. In this paper, we prove that if k?4, then G⌊3k/2⌋-2 is k-ordered Hamiltonian for every connected graph G on at least k vertices. By considering the case of the path graph Pn, we show that this result is sharp. We also give a lower bound on the power of the cycle Cn that guarantees k-ordered Hamiltonicity.  相似文献   

7.
In a graph G, a k-insulated set S is a subset of the vertices of G such that every vertex in S is adjacent to at most k vertices in S, and every vertex outside S is adjacent to at least k+1 vertices in S. The insulation sequencei0,i1,i2,… of a graph G is defined by setting ik equal to the maximum cardinality of a k-insulated set in G. We determine the insulation sequence for paths, cycles, fans, and wheels. We also study the effect of graph operations, such as the disjoint union, the join, the cross product, and graph composition, upon k-insulated sets. Finally, we completely characterize all possible orderings of the insulation sequence, and prove that the insulation sequence is increasing in trees.  相似文献   

8.
A graph G is (k1, k2, …, kt)-saturated if there exists a coloring C of the edges of G in t colors 1, 2, …, t in such a way that there is no monochromatic complete ki-subgraph K of color i, 1 ? i ? t, but the addition of any new edge of color i, joining two nonadjacent vertices in G, with C, creates a monochromatic K of color i, 1 ? i ? t. We determine the maximum and minimum number of edges in such graphs and characterize the unique extremal graphs.  相似文献   

9.
Let G=(V(G),E(G)) be a simple graph. Given non-negative integers r,s, and t, an [r,s,t]-coloring of G is a mapping c from V(G)∪E(G) to the color set {0,1,…,k?1} such that |c(v i )?c(v j )|≥r for every two adjacent vertices v i ,v j , |c(e i )?c(e j )|≥s for every two adjacent edges e i ,e j , and |c(v i )?c(e j )|≥t for all pairs of incident vertices and edges, respectively. The [r,s,t]-chromatic number χ r,s,t (G) of G is defined to be the minimum k such that G admits an [r,s,t]-coloring. We determine χ r,s,t (K n,n ) in all cases.  相似文献   

10.
We consider finite undirected loopless graphs G in which multiple edges are possible. For integers k,l ≥ 0 let g(k, l) be the minimal n ≥ 0 with the following property: If G is an n-edge-connected graph, s1, ?,sk, t1, ?,tk are vertices of G, and f1, ?,fl, g1, ?,gl, are pairwise distinct edges of G, then for each i = 1, ?, k there exists a path Pi in G, connecting si and ti and for each i = 1, ?,l there exists a cycle Ci in G containing fi and gi such that P1, ?,Pk, C1, ?, Cl are pairwise edge-disjoint. We give upper and lower bounds for g(k, l).  相似文献   

11.
The main theorem of that paper is the following: let G be a graph of order n, of size at least (n2 - 3n + 6)/2. For any integers k, n1, n2,…,nk such that n = n1 + n2 +. + nk and ni ? 3, there exists a covering of the vertices of G by disjoint cycles (Ci) =l…k with |Ci| = ni, except when n = 6, n1 = 3, n2 = 3, and G is isomorphic to G1, the complement of G1 consisting of a C3 and a stable set of three vertices, or when n = 9, n1 = n2 = n3 = 3, and G is isomorphic to G2, the complement of G2 consisting of a complete graph on four vertices and a stable set of five vertices. We prove an analogous theorem for bipartite graphs: let G be a bipartite balanced graph of order 2n, of size at least n2 - n + 2. For any integers s, n1, n2,…,ns with ni ? 2 and n = n1 + n2 + ? + ns, there exists a covering of the vertices of G by s disjoint cycles Ci, with |Ci| = 2ni.  相似文献   

12.
A decomposition ??={G1, G2,…,Gs} of a graph G is a partition of the edge set of G into edge‐disjoint subgraphs G1, G2,…,Gs. If Gi?H for all i∈{1, 2, …, s}, then ?? is a decomposition of G by H. Two decompositions ??={G1, G2, …, Gn} and ?={F1, F2,…,Fn} of the complete bipartite graph Kn,n are orthogonal if |E(Gi)∩E(Fj)|=1 for all i,j∈{1, 2, …, n}. A set of decompositions {??1, ??2, …, ??k} of Kn, n is a set of k mutually orthogonal graph squares (MOGS) if ??i and ??j are orthogonal for all i, j∈{1, 2, …, k} and ij. For any bipartite graph G with n edges, N(n, G) denotes the maximum number k in a largest possible set {??1, ??2, …, ??k} of MOGS of Kn, n by G. El‐Shanawany conjectured that if p is a prime number, then N(p, Pp+ 1)=p, where Pp+ 1 is the path on p+ 1 vertices. In this article, we prove this conjecture. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 369–373, 2009  相似文献   

13.
The path-width of a graph is the minimum value ofk such that the graph can be obtained from a sequence of graphsG1,…,Gr each of which has at mostk + 1 vertices, by identifying some vertices ofGi pairwise with some ofGi+1 (1 ≤ i < r). For every forestH it is proved that there is a numberk such that every graph with no minor isomorphic toH has path-width?k. This, together with results of other papers, yields a “good” algorithm to test for the presence of any fixed forest as a minor, and implies that ifP is any property of graphs such that some forest does not have propertyP, then the set of minor-minimal graphs without propertyP is finite.  相似文献   

14.
As an extension of the disjoint paths problem, we introduce a new problem which we call the induced disjoint paths problem. In this problem we are given a graph G and a collection of vertex pairs {(s1,t1),…,(sk,tk)}. The objective is to find k paths P1,…,Pk such that Pi is a path from si to ti and Pi and Pj have neither common vertices nor adjacent vertices for any distinct i,j.The induced disjoint paths problem has several variants depending on whether k is a fixed constant or a part of the input, whether the graph is directed or undirected, and whether the graph is planar or not. We investigate the computational complexity of several variants of the induced disjoint paths problem. We show that the induced disjoint paths problem is (i) solvable in polynomial time when k is fixed and G is a directed (or undirected) planar graph, (ii) NP-hard when k=2 and G is an acyclic directed graph, (iii) NP-hard when k=2 and G is an undirected general graph.As an application of our first result, we show that we can find in polynomial time certain structures called a “hole” and a “theta” in a planar graph.  相似文献   

15.
For bipartite graphs G 1, G 2, . . . ,G k , the bipartite Ramsey number b(G 1, G 2, . . . , G k ) is the least positive integer b so that any colouring of the edges of K b,b with k colours will result in a copy of G i in the ith colour for some i. A tree of diameter three is called a bistar, and will be denoted by B(s, t), where s ≥ 2 and t ≥ 2 are the degrees of the two support vertices. In this paper we will obtain some exact values for b(B(s, t), B(s, t)) and b(B(s, s), B(s, s)). Furtermore, we will show that if k colours are used, with k ≥ 2 and s ≥ 2, then \({b_{k}(B(s, s)) \leq \lceil k(s - 1) + \sqrt{(s - 1)^{2}(k^{2} - k) - k(2s - 4)} \rceil}\) . Finally, we show that for s ≥ 3 and k ≥ 2, the Ramsey number \({r_{k}(B(s, s)) \leq \lceil 2k(s - 1)+ \frac{1}{2} + \frac{1}{2} \sqrt{(4k(s - 1) + 1)^{2} - 8k(2s^{2} - s - 2)} \rceil}\) .  相似文献   

16.
A simple graph with n vertices is called Pi-connected if any two distinct vertices are connected by an elementary path of length i. In this paper, lower bounds of the number of edges in graphs that are both P2- and Pi-connected are obtained. Namely if i?12(n+1), then |E(G)|?((4i?5)/(2i?2))(n?1), and if i > 12(n+ 1), then |E(G)|?2(n?1) apart from one exeptional graph. Furthermore, extremal graphs are determined in the former.  相似文献   

17.
For a graph G, let σ2(G) denote the minimum degree sum of a pair of nonadjacent vertices. We conjecture that if |V(G)| = n = Σki = 1 ai and σ2(G) ≥ n + k − 1, then for any k vertices v1, v2,…, vk in G, there exist vertex‐disjoint paths P1, P2,…, Pk such that |V(Pi)| = ai and vi is an endvertex of Pi for 1 ≤ ik. In this paper, we verify the conjecture for the cases where almost all ai ≤ 5, and the cases where k ≤ 3. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 163–169, 2000  相似文献   

18.
Suppose thatk ≥ 1 is an odd integer, (s 1,t 1),..., (s k> ,t k ) are pairs of vertices of a graphG andλ(s i ,t i ) is the maximal number of edge-disjoint paths betweens i andt i . We prove that ifλ(s i ,t i )≥ k (1≤ i ≤ k) and |{s 1,...s k ,t 1,...,t k }| ≤ 6, then there exist edge-disjoint pathsP 1,...,P k such thatP i has endss i andt i (1≤ i ≤ k).  相似文献   

19.
We consider graphs, which are finite, undirected, without loops and in which multiple edges are possible. For each natural numberk letg(k) be the smallest natural numbern, so that the following holds:LetG be ann-edge-connected graph and lets 1,...,s k,t 1,...,t k be vertices ofG. Then for everyi {1,..., k} there existsa pathP i froms i tot i, so thatP 1,...,P k are pairwise edge-disjoint. We prove   相似文献   

20.
Let O(G) denote the set of odd-degree vertices of a graph G. Let t ? N and let ??t denote the family of graphs G whose edge set has a partition. E(g) = E1 U E2 U … U Etsuch that O(G) = O(G[Ei]) (1 ? i ? t). This partition is associated with a double cycle cover of G. We show that if a graph G is at most 5 edges short of being 4-edge-connected, then exactly one of these holds: G ? ??3, G has at least one cut-edge, or G is contractible to the Petersen graph. We also improve a sufficient condition of Jaeger for G ? ??2p+1(p ? N).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号