首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Li+ ion conducting Li–Al–Ti–P–O thin films were fabricated on ITO-glass substrates at various temperatures from 25 to 400 °C by RF magnetron sputtering method. When the substrate temperature is higher than 300 °C, severe destruction of ITO films were confirmed by XRD (X-ray diffraction) and the abrupt transformation of one semi-circle into two semi-circles on the impedance spectra. These as-deposited Li–Al–Ti–P–O solid state electrolyte thin films have an amorphous structure confirmed by XRD and a single semicircle on the impedance spectra. Good transmission higher than 80% in the visible light range of these electrolyte thin films can fulfill the demand of electro-chromic devices. Field emission scanning electron microscopy and atomic force microscopy showed the denser, smoother and more uniform film structure with the enhanced substrate temperature. Measurements of impedance spectra indicate that the gradual increased conductivity of these Li–Al–Ti–P–O thin films with the elevation of substrate temperature from room temperature to 300 °C is originated from the increase of the pre-exponential factor (σ0). The largest Li-ion conductivity can come to 2.46 × 10? 5 S cm? 1. This inorganic solid lithium ion conductor film will have a potential application as an electrolyte layer in the field such as lithium batteries or all-solid-state EC devices.  相似文献   

2.
《Journal of Non》2006,352(38-39):4088-4092
In this paper, amorphous ZnO thin films were obtained by direct UV irradiation of β-diketonate Zn(II) precursor complexes spin-coated on Si(1 0 0) and fused silica substrates. ZnO films were characterized by means of XPS, X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). These analyses revealed that as-deposited films are amorphous and have a rougher surface than thermally treated films. Optical characterization of the films showed that these are highly transparent in the visible spectrum with an average transmittance of up to 95% over 400 nm, and an optical band-gap energy of 3.21 eV for an as-deposited film, and 3.27 eV for a film annealed at 800 °C. Low resistivity values were obtained for the ZnO films (1.0 × 10−2 Ω cm) as determined by Van der Pauw four-point probe method.  相似文献   

3.
Using argon as a diluent of Silane, hydrogenated amorphous and nanorocrystalline silicon films Si:H were prepared by radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD). The deposition rate and crystallinity varying with the deposition pressure and rf power, were systematically studied. Structural analysis (Raman scattering spectroscopy and X-ray diffraction), combined with optical measurements spectroscopy were used to characterize the films. The argon dilution of silane for all samples studied was 95% by volume, and the substrate temperature was 200 °C. The deposition pressure was varied from 400 mTorr to 1400 mTorr and varying rf power from 50 to 250 W. The structural evolution studies, shows that beyond 200 W of rf power, an amorphous-nanocrystalline transition was observed, with an increase in crystalline fraction by increasing rf power and working pressure. The films were grown at high deposition rates. The deposition rates of the films near the amorphous-nanocrystalline phase transition region were found in the range 6–10 Å/s. A correlation between structural and optical properties has been found and discussed.  相似文献   

4.
《Journal of Non》2007,353(13-15):1437-1440
Surface morphology and roughness of amorphous spin-coated As–S–Se chalcogenide thin films were determined using atomic force microscopy. Prepared films were coated from butylamine solutions with thicknesses d  100 nm and then annealed in a vacuum furnace at 45 °C and 90 °C for 1 h for their stabilization. The root mean square surface roughness analysis of surfaces of as-deposited spin-coated As–S–Se films indicated a very smooth film surface (with Rq values 0.42–0.45 ± 0.2 nm depending on composition). The nanoscale images of as-deposited films confirmed that surface of the films is created by domains with dimensions 20–40 nm, which corresponds to diameters of clusters found in solutions. The domain character of film surfaces gradually disappeared with increasing annealing temperature while the solvent was removed from the films. Middle-infrared transmission spectra recorded a decrease of intensities of vibration bands connected to N–H (at 3367 and 3292 cm−1) and C–H (at 2965, 2935 and 2880 cm−1) stretching vibrations. Temperature regions of solvent evaporation T = 60–90 °C and glass transformation temperatures Tg = 135–150 °C of spin-coated As–S–Se thin films were determined using a modulated differential scanning calorimetry.  相似文献   

5.
《Journal of Non》2006,352(52-54):5572-5577
Amorphous indium nitride (a-InN) thin films were deposited onto different substrates at temperatures <325 K using RF magnetron sputtering at a rate 0.3–0.4 Å/s. X-ray diffraction patterns reveal that the films grown on the substrates are amorphous. The optical absorption edge, ‘bandgap’ energy, Eg, of a-InN has been determined by spectroscopic ellipsometry over the energy range 0.88–4.1 eV. The absorption coefficient was obtained by the analysis of the measured ellipsometric spectra with the Tauc–Lorentz model. The Eg was determined using the modified Tauc and Cody extrapolations. The corresponding Tauc and Cody optical bandgaps were found to be 1.75 and 1.72 eV, respectively. These values are in excellent agreement with the values of the bandgap energy obtained as fitting parameters in the Tauc–Lorentz model: 1.72 ± 0.006 eV as well as by using spectrophotometry (1.74 eV) and photoluminescence (1.6 eV). The spectral dependence of the polarized absorptivities was also investigated. We found that there was a higher absorptivity for wavelengths <725 nm. This wavelength, ∼725 nm, therefore indicates that the absorption edge for a-InN is about 1.70 eV. Thus, the average value of the measured optical absorption of a-InN film is approximately 1.68 ± 0.071 eV.  相似文献   

6.
Amorphous tungsten-doped In2O3 (IWO) films were deposited from a metallic target by dc magnetron sputtering at room temperature. Both oxygen partial pressure and sputtering power have significant effects on the electrical and optical properties of the films. The as-deposited IWO films with the optimum resistivity of 5.8 × 10?4 Ω·cm and the average optical transmittance of 92.3% from 400 to 700 nm were obtained at a W content of 1 wt%. The average transmittance in the near infrared region (700–2500 nm) is 84.6–92.8% for amorphous IWO prepared under varied oxygen partial pressure. The mobility of the IWO films reaches its highest value of 30.3 cm2 V?1 s?1 with the carrier concentration of 1.6 × 1020 cm?3, confirming their potential application as transparent conductive oxide films in various flexible devices.  相似文献   

7.
《Journal of Non》2007,353(5-7):481-485
The photoluminescence properties of type I sol–gel synthesized Rhodamine 6G doped silica samples were investigated in the 1.5 × 10−4–1.5 × 10−3 mol/l range of concentration by means of steady-state and time resolved photoluminescence measurements. The emission peak red shifts as the concentration increases. For a fixed concentration, the peak position also red shifts as the excitation wavelength decreases. The observed spectroscopic features, including excitation of photoluminescence and decay time, indicate the formation of fluorescent dimers.  相似文献   

8.
《Journal of Crystal Growth》2003,247(3-4):393-400
Using a highly conductive ZnO(ZnAl2O4) ceramic target, c-axis-oriented transparent conductive ZnO:Al2O3 (ZAO) thin films were prepared on glass sheet substrates by direct current planar magnetron sputtering. The structural, electrical and optical properties of the films (deposited at different temperatures and annealed at 400°C in vacuum) were characterized with several techniques. The experimental results show that the electrical resistivity of films deposited at 320°C is 2.67×10−4 Ω cm and can be further reduced to as low as 1.5×10−4 Ω cm by annealing at 400°C for 2 h in a vacuum pressure of 10−5 Torr. ZAO thin films deposited at room temperature have flaky crystallites with an average grain size of ∼100 nm; however those deposited at 320°C have tetrahedron grains with an average grain size of ∼150 nm. By increasing the deposition temperature or the post-deposition vacuum annealing, the carrier concentration of ZAO thin films increases, and the absorption edge in the transmission spectra shifts toward the shorter wavelength side (blue shift).  相似文献   

9.
F.A. Ferri 《Journal of Non》2012,358(1):58-60
This work focuses on the crystallization of amorphous germanium (a-Ge) thin films induced by manganese species. A series of Mn-containing a-Ge films ([Mn] ~ 0?3.7 at.% range) was deposited at 150 °C by the cosputtering technique. After deposition, all films were submitted to isochronal thermal annealing treatments up to 600 °C and analyzed by Raman scattering, optical transmission spectroscopy and electrical resistivity measurements. The experimental results indicate that: (a) Mn impurity lowers the crystallization temperature of a-Ge in ~ 100 °C, as confirmed by the Raman analyses, (b) the optical properties of the films are affected by both the insertion of Mn and the temperature of thermal treatment, with the optical bandgap staying in the range of ~ 0.7?1 eV, and (c) the electrical resistivity of the samples is also influenced by the Mn concentration and by the temperature of annealing, varying between ~ 1.0×101 and 1.6×104 Ω cm. These experimental observations were systematically studied and the possible reasons associated to them are presented and discussed.  相似文献   

10.
《Journal of Non》2006,352(23-25):2335-2338
This paper reports the structural, electrical and optical properties of Yttrium doped zinc oxide (YZO) thin films deposited on Corning (7059) glass substrates by spin coating technique. A precursor solution of ZnO, 0.2 M in concentration was prepared from zinc acetate dissolved in anhydrous ethanol with diethanolamine as a sol gel stabilizer. Yttrium nitrate hexahydrate (Y2NO3 · 6H2O) was used as the dopant (3 wt%) in the present study. The films of different thickness in the range (200–500 nm) were prepared. The films were annealed in air at 450 °C for 1 h. It was observed that the c-axis orientation improves and the grain size increases as is indicated by an increase in intensity of the (0 0 2) peak and the decrease in the FWHM with the increase of film thickness. The resistivity decreased sharply from 2.8 × 10−2 to 5.8 × 10−3 Ω-cm as the thickness increased from 200 to 500 nm. However, the average transmittance decreased from 87% to 82.6% as the film thickness increased to 500 nm. The lowest sheet resistance of ∼120 Ω/□ was obtained for the 500 nm thick film.  相似文献   

11.
《Journal of Non》2006,352(9-20):1196-1199
Optical absorption coefficient spectra of hydrogenated microcrystalline cubic silicon carbide (μc-3C–SiC:H) films prepared by Hot-Wire CVD method have been estimated for the first time by resonant photothermal bending spectroscopy (resonant-PBS). The optical bandgap energy and its temperature coefficient of μc-3C–SiC:H film is found to be about 2.2 eV and 2.3 × 10−4 eV K−1, respectively. The absorption coefficient spectra of localized states, which are related to grain boundaries, do not change by exposure of air and thermal annealing. The localized state of μc-3C–SiC:H has different properties for impurity incorporation compared with that of hydrogenated microcrystalline silicon (μc-Si:H) film.  相似文献   

12.
《Journal of Non》2006,352(32-35):3647-3652
The aim of this paper is to present a study of the thermal lens technique in quantifying the thermo optical coefficients: ds/dT (optical path change with temperature), thermal diffusivity and conductivity of PbO–Bi2O3–Ga2O3–BaO glasses doped with Yb3+. The thermal lens results indicate that the heat generation, as a function of the incident wavelength, resembles the absorption band 2F7/2  2F5/2 of Yb3+. Thermal diffusivity of 2 × 10−3 cm2/s and thermal conductivity of 4.5 × 10−3 W/K cm were obtained and are similar to other glasses already reported in previous literature. The results emphasize that the thermal lens technique can be a powerful tool to study the heat generation of new glassy systems.  相似文献   

13.
Hydrogenated polymorphous silicon (pm-Si:H) thin films have been deposited by plasma-enhanced chemical vapor deposition at high rate (8–10 Å/s), and a set of complementary techniques have been used to study transport, localized state distribution, and optical properties of these films, as well as the stability of these properties during light-soaking. We demonstrate that these high deposition rate pm-Si:H films have outstanding electronic properties, with, for example, ambipolar diffusion length (Ld) values up to 290 nm, and density of states at the Fermi level well below 1015 cm?3 eV?1. Consistent with these material studies, results on pm-Si:H PIN modules show no dependence of their initial efficiency on the increase of the deposition rate from 1 to 10 Å/s. Although there is some degradation after light-soaking, the electronic quality of the films is better than for degraded standard hydrogenated amorphous silicon (values of Ld up to 200 nm). This result is reflected in the light-soaked device characteristics.  相似文献   

14.
Raman spectra of the mixed phase silicon films were studied for a sample with transition from amorphous to fully microcrystalline structure using four excitation wavelengths (325, 514.5, 632.8 and 785 nm). Factor analysis showed the presence of two and only two spectrally independent components in the spectra within the range from 250 to 750 cm?1 for all four excitation wavelengths. The 785 nm excitation was found optimal for crystallinity evaluation and by comparison with surface crystallinity obtained by atomic force microscopy, we have estimated the ratio of integrated Raman cross-sections of microcrystalline and amorphous silicon at this wavelength as y = 0.88 ± 0.05.  相似文献   

15.
Magnetic nanostructures display new and interesting physical phenomena and are currently used in a large variety of applications. We studied the structural, magnetic and transport properties of Co thin films deposited by ion beam sputtering. We probed the influence of the buffer layer material (Al, Cu, Ru or Ta) and thickness (10–100 Å) on the structural properties of Co thin films. Using X-ray diffraction we observed that textured fcc Co films can be grown on amorphous Ta as thin as 20 Å but for the other buffer layers no texture is observed. We also studied by magneto-optical Kerr effect (MOKE) the magnetic properties of the Co thin films as a function of Co thickness (100–1000 Å). Finally, the electrical resistivity and anisotropic magnetoresistance (AMR) of our Co thin films (on a Ta buffer) was obtained as a function of Co thickness.  相似文献   

16.
CdTe thin films were prepared onto water-white glass substrates by the close spaced sublimation technique. The films annealed right after the deposition were then immersed in copper nitrate solution for different periods of time. These films were again annealed at 500 oC for 1 h to ensure the diffusion of copper in the films. The samples were characterized by X-ray diffraction and scanning electron microscopy. The electron microprobe analyzer showed an increase of copper-content in composition. The dc electrical conductivity showed a credible increase with increasing copper-content in the films. With the increase of copper-content, the hole mobility increased systematically. The optical parameters were deduced by fitting the optical transmittance in the wavelength range 300–2500 nm.  相似文献   

17.
《Journal of Non》2007,353(30-31):2934-2937
The structural, optical dispersion and electrical conductivity properties of the CuSe thin film have been investigated using X-ray diffraction, electrical and optical characterization methods. X-ray diffraction results indicate that CuSe thin film has an amorphous structure. The electrical conductivity of the CuSe film increases with increasing temperature. The activation energy and room temperature conductivity values of the film were found to be 1.32 meV and 3.89 × 10−3 S/cm, respectively. The refractive index dispersion of the thin film obeys the single oscillator model and single oscillator parameters were determined. The Eo, n, and So values of the CuSe thin film were found to be 5.08 eV, 3.55 and 1.92 × 1014 m−2, respectively. The obtained results suggest that CuSe film is an amorphous semiconductor.  相似文献   

18.
《Journal of Non》2006,352(21-22):2264-2266
The coefficient of thermal expansion (CTE), Young’s modulus, Poisson’s ratio, stress and hardness of a-CNx and a-CNx:H were investigated as a function of nitrogen concentration. Hydrogenated films were prepared by glow discharge, GD, and unhydrogenated films were prepared by ion beam assisted deposition, IBAD. Using nanohardness measurements and the thermally induced bending technique, it was possible to extract separately, Young’s modulus and Poisson’s ratio. A strong influence of hydrogen, in a-CNx:H films, was observed on the CTE, which reaches about ∼9 × 10−6 C−1, close to that of graphite (∼8 × 10−6 C−1) for nitrogen concentration as low as 5 at.%. On the other hand, the CTE of unhydrogenated films increases with nitrogen concentration at a much lower rate, reaching 5.5 × 10−6 C−1 for 33 at.% nitrogen.  相似文献   

19.
《Journal of Crystal Growth》2003,247(3-4):613-622
The equilibrated grain boundary groove shapes for the commercial purity succinonitrile (SCN) and succinonitrile–carbon tetrabromide (CTB) eutectic system were directly observed. From the observed grain boundary groove shapes, the Gibbs–Thomson coefficients for the solid SCN–liquid SCN and solid SCN–liquid SCN CTB have been determined to be (5.43±0.27)×10−8 Km and (5.56±0.28)×10−8 Km, respectively, with numerical method. The solid–liquid interface energies for the solid SCN–liquid SCN and solid SCN–liquid SCN CTB have been obtained to be (7.86±0.79)×10−3 J m−2 and (8.80±0.88)×10−3 J m−2, respectively from the Gibbs–Thomson equation. The grain boundary energies in the SCN and SCN rich phase of the SCN–CTB system have been calculated to be (15.03±1.95)×10−3 J m−2 and (16.51±2.15)×10−3 J m−2, respectively, from the observed grain boundary groove shapes. The thermal conductivity ratios of the liquid phase to the solid phase for SCN and SCN–4 mol% CTB alloy have also been measured.  相似文献   

20.
《Journal of Non》2005,351(49-51):3725-3729
A novel amorphous zirconium carbon nitrides (ZrCN) material was deposited by reactive sputtering using a ZrC target (99.5% in purity) in a mixture of Ar and N2 ambient. The microstructure and mechanical properties of the ZrCN films were examined with respect to N2 pressure. For thermal stability characterization, the stacked structure of Cu/ZrCN/Si was subsequently subject to thermal treatments at temperatures from 300 °C to 900 °C for 30 min in a vacuum tube with the base pressure of 3 × 10−5 torr. The results show that the amorphous ZrCN films exhibit superior mechanical properties to either ZrN or ZrC including hardness and elastic modulus. The stacked samples were shown to be thermally stable up to about 800 °C from Auger electron spectroscopy and X-ray diffraction, where the ZrCN still remains its amorphous phase. The device completely fails at 900 °C and the mechanism is discussed in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号