首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The homogenization technique is used to obtain an elastoplastic stress–strain relationship for dry, saturated and unsaturated granular materials. Deformation of a representative volume of material is generated by mobilizing particle contacts in all orientations. In this way, the stress–strain relationship can be derived as an average of the mobilization behavior of these local contact planes. The local behavior is assumed to follow a Hertz–Mindlin’s elastic law and a Mohr–Coulomb’s plastic law. For the non-saturated state, capillary forces at the grain contacts are added to the contact forces created by an external load. They are calculated as a function of the degree of saturation, depending on the grain size distribution and on the void ratio of the granular assembly. Numerical simulations show that the model is capable of reproducing the major trends of a partially saturated granular assembly under various stress and water content conditions. The model predictions are compared to experimental results on saturated and unsaturated samples of silty sands under undrained triaxial loading condition. This comparison shows that the model is able to account for the influence of capillary forces on the stress–strain response of the granular materials and therefore, to reproduce the overall mechanical behavior of unsaturated granular materials.  相似文献   

2.
Silty sand is a soil mixture with coarse grains and fine grains. Experimental observations have shown that small amount of fines may reduce the undrained shear strength significantly. The purpose of this paper is to propose a micromechanical model for the stress–strain behavior of silty sand influenced by fines under drained and undrained conditions. The micromechanical stress–strain model accounts for the influence of fines on the density state of the soil mixture, thus consequently affect the critical state friction angle and the amount of sliding between particles. The present model is examined by simulating typical drained and undrained tests in conventional triaxial conditions. The simulated stress–strain curves are compared with the measured results on samples made of Ottawa sand and Foundry sand with various amounts of fines. The predictive ability of the present model for simulating the behavior of silty sand is discussed.  相似文献   

3.
The mechanical properties of sand: stiffness, cohesion and, to a less extent, friction angle can be increased through the process of grouting. A constitutive model adapted for cohesive-frictional materials from a homogenization technique which allowed us to integrate constitutive relations at the grain level has been developed to obtain constitutive equations for the equivalent continuous granular medium. A representative volume was obtained by mobilizing particle contacts in all orientations. Thus, the stress–strain relationship could be derived as an average of the behavior of these local contact planes. The local behavior was assumed to obey a stress-dependent elastic law and Mohr–Coulomb’s plastic law. The influence of the cement grout was modeled by means of adhesive forces between grains in contact, which were added to the contact forces created by an external load. The intensity of these adhesive forces is a function of nature and amount of grout present inside the material and can be reduced due to a damage mechanism at the grain contact during loading. In this paper, we present several examples of simulation which show that the model can reproduce with sufficient accuracy the mechanical improvement induced by grouting as well as the damage of the grain cementation during loading.  相似文献   

4.
Constitutive equations for class of materials that possess granular microstructure can be effectively derived using granular micromechanics approach. The stress–strain behavior of such materials depends upon the underlying grain scale mechanisms that are modeled by using appropriate rate-dependent inter-granular force–displacement relationships. These force–displacement functions are nonlinear and implicit evolutions equations. The numerical solution of such equation under applied overall stress or strain loading can entail significant computational expense. To address the computations issue, an efficient explicit time-integration scheme has been derived. The developed model is then utilized to predict primary, secondary and tertiary creep as well as rate-dependent response under tensile and compressive loads for hot mix asphalt. Further, the capability of the derived model to describe multi-axial behavior is demonstrated through generations of biaxial time-to-creep failure envelopes and rate-dependent failure envelopes under monotonic biaxial and triaxial loading. The advantage of the approach presented here is that we can predict the multi-axial effects without resorting to complex phenomenological modeling.  相似文献   

5.
By representing the assembly by a simplified column model, a constitutive theory, referred to as sliding–rolling theory, was recently developed for a two-dimensional assembly of rods subjected to biaxial loading, and then extended to a three-dimensional assembly of spheres subjected to triaxial (equibiaxial) loading. The sliding–rolling theory provides a framework for developing a phenomenological constitutive law for granular materials, which is the objective of the present work. The sliding–rolling theory provides information concerning yield and flow directions during radial and non-radial loading. In addition, the theory provides information on the role of fabric anisotropy on the stress–strain behavior and critical state shear strength. In the present paper, a multi-axial phenomenological model is developed within the sliding–rolling framework by utilizing the concepts of critical state, classical elasto-plasticity and bounding surface. The resulting theory involves two yield surfaces and falls within the definition of the multi-mechanism models. Computational issues concerning the solution uniqueness for stress states at the corner of yield surfaces are addressed. The effect of initial and induced fabric anisotropy on the constitutive behavior is incorporated. It is shown that the model is capable of simulating the effect of anisotropy, and the behavior of loose and dense sands under drained and undrained loading.  相似文献   

6.
Experimental observations have shown the significant impact of fines or coarse grains on the behavior of sand-silt mixtures. To describe the behavior of sand-silt mixtures under both drained and undrained conditions, this paper presents a mathematical model based on a micromechanical approach. The novelty of this model is the introduction of the equivalent mean size and the evolution of the position of the critical state line with fines content for various sand-silt mixtures. The predictive capability of the model was evaluated by comparing the model simulations with experimental results on undrained triaxial tests of Foundry sand-silt mixtures with fines content, fc = 0–100% and Ottawa sand-silt mixtures with fines content fc = 0–50%, and on drained triaxial tests of Hong Kong Completely Decomposed Granite (HK-CDG) mixtures before and after erosion. The predicted local behavior in the contact planes has also been examined. It shows that all local contact planes are mobilized to different degrees in terms of local stress and strain and that a few active contact planes contribute dominantly to the deformation of the assembly, leading to an anisotropic global behavior when the soil is subjected to external loading.  相似文献   

7.
In this paper, we propose a micromechanical analysis of damage and related inelastic deformation in saturated porous quasi brittle materials. The materials are weakened by randomly distributed microcracks and saturated by interstitial fluid with drained and undrained conditions. The emphasis is put on the closed cracks under compression-dominated stresses. The material damage is related to the frictional sliding on crack surface and described by a local scalar variable. The effective properties of the materials are determined using a linear homogenization approach, based on the extension of Eshelby’s inclusion solution to penny shaped cracks. The inelastic behavior induced by microcracks is described in the framework of the irreversible thermodynamics. As an original contribution, the potential energy of the saturated materials weakened by closed frictional microcracks is determined and formulated as a sum of an elastic part and a plastic part, the latter entirely induced by frictional sliding of microcracks. The influence of fluid pressure is accounted for in the friction criterion through the concept of local effective stress at microcracks. We show that the Biot’s effective stress controls the evolution of total strain while the local Terzaghi’s effective stress controls the evolution of plastic strain. Further, the frictional sliding between crack lips generates volumetric dilatancy and reduction in fluid pressure. Applications of the proposed model to typical brittle rocks are presented with comparisons between numerical results and experimental data in both drained and undrained triaxial tests.  相似文献   

8.
The purpose of this paper is to investigate the stress-dependent behaviour of clay during drained and undrained shearing by means of a micromechanical approach. A new micromechanical stress–strain model is developed for clay using the approach developed in earlier studies by Chang and Hicher [Chang, C.S., Hicher, P.Y., 2005. An elastic–plastic model for granular materials with microstructural consideration. International Journal of Solids and Structures 42(14), 4258–4277]. In order to model the extension test on a K0 consolidated sample, a formulation is developed to account for the stress reversal on a contact plane. The model is then used to simulate numerous stress-path tests on Lower Cromer Till and kaolin clay, including triaxial compression and extension tests, under both undrained and drained conditions, with different K0 consolidation, and different over-consolidation ratios. The applicability of the present model is evaluated through comparisons between the predicted and the measured results. The evolution of local stresses and local strains at inter-particle planes are discussed in order to explain the stress-induced anisotropy due to externally applied load. All simulations have demonstrated that the proposed micromechanical approach is capable of modelling the stress-induced anisotropy and other major features of the complex behaviour in clay.  相似文献   

9.
It has been well recognized that, due to anisotropic packing structure of granular material, the true stress in a specimen is different from the applied stress. However, very few research efforts have been focused on quantifying the relationship between the true stress and applied stress. In this paper, we derive an explicit relationship among applied stress tensor, material-fabric tensor, and force-fabric tensor; and we propose a relationship between the true stress tensor and the applied stress tensor. The validity of this derived relationship is examined by using the discrete element simulation results for granular material under biaxial and triaxial loading conditions.  相似文献   

10.
An elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces is developed on the basis of soil behavior observed in laboratory tests. This theory is applicable to general three-dimensional stress conditions, but the parameters required to characterize the soil behavior can be derived entirely from results of isotropic compression and conventional drained triaxial compression tests. The theory is shown to predict soil behavior under various loading conditions with good accuracy. Of special interest is its capability of predicting soil behavior under drained as well as undrained conditions over a range of confining pressures where the behavior changes from that typical of dense sand to that typical of loose sand. Work-hardening as well as work-softening is incorporated in the theory.  相似文献   

11.
A micromechanical model for cohesive materials is derived by considering their underlying microstructure conceptualized as a collection of grains interacting through pseudo-bonds. The pseudo-bond or the inter-granular force–displacement relations are formulated taking inspiration from the atomistic-level particle interactions. These force–displacement relationships are then used to derive the incremental stiffnesses at the grain-scale, and consequently, obtain the sample-scale stress–strain relationship of a representative volume of the material. The derived relationship is utilized to study the stress–strain and failure behavior including the volume change and “brittle” to “ductile” transition behavior of cohesive materials under multi-axial loading condition. The model calculations are compared with available measured data for model validation. Model predictions exhibit both quantitative and qualitative consistency with the observed behavior of cohesive material.  相似文献   

12.
A model for the behavior of low-density, open-cell foam under compressive strain is proposed. Using this model, a tractable relationship between the normalized permeability and the applied strain is developed. An experimental study of the effect of strain on the permeability of open-cell polyurethane foams is presented. The experiments are performed using a Newtonian fluid in the fully laminar regime, where viscous forces are assumed to dominate. The model is found to describe the experimental data well and be independent of the foam cell size, the direction of flow with respect to the foam rise direction, and the properties of the saturating fluid. In a companion paper, the model for the permeability of open-cell foam is combined with Darcy’s law to give the contribution of viscous fluid flow to the stress–strain response of a reticulated foam under dynamic loading.  相似文献   

13.
To model the cumulative deformation of granular soils under cyclic loading, a mathematical model was proposed. The power law connection between the shear strain and loading cycle was represented by using fractional derivative approach. The volumetric strain was characterized by a modified cyclic flow rule which considered the effect of particle breakage. All model parameters were obtained by the cyclic and static triaxial tests. Predictions of the test results were provided to validate the proposed model. Comparison with an existing cumulative model was also made to show the advantage of the proposed model.  相似文献   

14.
The inherent anisotropy more or less exists in sand when preparing samples in laboratory or taking from field. The purpose of this paper is to model cyclic behaviour of sand by means of a micromechanical approach considering inherent anisotropy. The micromechanical stress–strain model developed in an earlier study by Chang and Hicher (2005) is enhanced to account for the stress reversal on a contact plane and the density state-dependent dilatancy. The enhanced model is first examined by simulating typical drained and undrained cyclic tests in conventional triaxial conditions. The model is then used to simulate drained cyclic triaxial tests under constant p′ on Toyoura sand with different initial void ratios and different levels of p′, and undrained triaxial tests on dense and loose Nevada sand. The applicability of the present model is evaluated through comparisons between the predicted and the measured results. The evolution of local stresses and local strains at inter-particle planes due to externally applied load are discussed. All simulations have demonstrated that the proposed micromechanical approach is capable of modelling the cyclic behaviour of sand with inherent and induced anisotropy.  相似文献   

15.
In granular mechanics, macroscopic approaches treat a granular material as an equivalent continuum at macro-scale, and study its constitutive relationship between macro-quantities, such as stresses and strains. On the other hand, microscopic approaches consider a granular material as an assembly of individual particles interacting with each other at micro-scale (i.e., particle-scale), and the physical quantities under study are forces and displacements. This paper aims at linking up the findings from these two scales and to establish the macro–micro relations in granular mechanics.Three aspects of the macro–micro relations are investigated. They are about the internal structure, the stress tensor and the strain tensor. The internal structure is described with geometrical systems at the particle scale. Micro-structural definitions of the stress and strain tensors are derived, which link the macro-stress tensor with the contact forces, and the macro-strain tensor with the relative displacements at contact. In addition to a brief review of the past research work on these topics, further generalizations are made in this paper. In particular, the two cell systems proposed by Li and Li (2009), namely the solid cell system and the void cell system, are introduced and used for the derivation of the macro-structural expressions. The stress expression is derived based on Newton’s second law of motion. The result is valid for both static and dynamic cases. The strain expression is derived based on the compatibility requirement. And the expression is valid for any tessellation subdividing the granular assembly into polyhedral elements.The homogenization for deriving a macroscopic constitutive relationship from microscopic behaviour is discussed. Attention is placed on the macroscopic quantification of the internal structure in terms of a second rank tensor, known as the fabric tensor. Existing definitions of the fabric tensors have been reviewed. The correlations among different fabric tensors and their relations with the stress–strain behaviours have been investigated.  相似文献   

16.
This study presents the micro-scale behavior of granular materials under biaxial cyclic loading for different confining pressures using the two-dimensional (2D) discrete element method (DEM). Initially, 8450 ovals were generated in a rectangular frame without any overlap. Four dense samples having confining pressures of 15, 25, 50, and 100 kPa were prepared from the initially generated sparse sample. Numerical simulations were performed under biaxial cyclic loading using these isotropically compressed dense samples. The numerical results depict stress–strain–dilatancy behavior that was similar to that observed in experimental studies. The relationship between the stress ratio and dilatancy rate is almost independent of confining pressures during loading but significantly dependent on the confining pressures during unloading. The evolution of the coordination number, effective coordination number and slip coordination number depends on both the confining pressures and cyclic loading. The cyclic loading significantly affects the microtopology of the granular assembly. The contact fabric and the fabric-related anisotropy are reported, as well. A strong correlation between the stress ratio and the fabric related to contact normals is observed during cyclic loading, irrespective of confining pressures.  相似文献   

17.
一般加载规律的弹塑性本构关系   总被引:1,自引:1,他引:0  
将有关文献给出的一般加载规律一维全量理论的简单模型推广到一般加载规律的一维增量理论,进而推广到一般加载规律的多维增量理论.在此基础上,建立了推导一般加载规律的多维增量理论的本构关系的一种途径.应用这种途径,从应力空间的加载函数和应变空间的加载函数出发,推导了等向强化材料和被加热的等向强化材料的一般加载规律的弹塑性本构关系的两种表示形式.理论和实例均表明,这种途径对等向强化材料、随动强化材料和理想弹塑性材料均适用.  相似文献   

18.
Motivated by the distribution of non-linear relaxation (DNLR) approach, a phenomenological model is proposed in order to describe the cyclic plasticity behavior of metals under proportional and non-proportional loading paths with strain-controlled conditions. Such a model is based on the generalization of the Gibbs's relationship outside the equilibrium of uniform system and the use of the fluctuation theory to analyze the material dissipation due to its internal reorganization. The non-linear cyclic stress–strain behavior of metals notably under complex loading is of particular interest in this study. Since the hardening effects are described appropriately and implicitly by the model, thus, a host of inelastic behavior of metals under uniaxial and multiaxial cyclic loading paths are successfully predicted such as, Bauschinger, strain memory effects as well as additional hardening. After calibrating the model parameters for two metallic materials, the model has demonstrated obviously its ability to describe the cyclic elastic-inelastic behavior of the nickel base alloy Waspaloy and the stainless steel 316L. The model is then implemented in a commercial finite element code simulating the cyclic stress–strain response of a thin-walled tube specimen. The numerical responses are in good agreement with experimental results.  相似文献   

19.
A series of triaxial compression experiments were preformed for the coarse marble samples under different loading paths by the rock mechanics servo-controlled testing system. Based on the experimental results of complete stress-strain curves, the influence of loading path on the strength and deformation failure behavior of coarse marble is made a detailed analysis. Three loading paths (Paths I–III) are put forward to confirm the strength parameters (cohesion and internal friction angle) of coarse marble in accordance with linear Mohr-Coulomb criterion. Compared among the strength parameters, two loading paths (i.e. Path II by stepping up the confining pressure and Path III by reducing the confining pressure after peak strength) are suggested to confirm the triaxial strengths of rock under different confining pressures by only one sample, which is very applicable for a kind of rock that has obvious plastic and ductile deformation behavior (e.g. marble, chalk, mudstone, etc.). In order to investigate re-fracture mechanical behavior of rock material, three loading paths (Paths IV–VI) are also put forward for flawed coarse marble. The peak strength and deformation failure mode of flawed coarse marble are found depending on the loading paths (Paths IV–VI). Under lower confining pressures, the peak strength and Young’s modulus of damage sample (compressed until post-peak stress under higher confining pressure) are all lower compared with that of flawed sample; moreover mechanical parameter of damage sample is lower for the larger compressed post-peak plastic deformation of coarse marble. However under higher confining pressures (e.g. σ 3?=?30 MPa), the axial supporting capacity and elastic modulus of damage coarse marble (compressed until post-peak stress under lower confining pressure) is not related to the loading path, while the deformation modulus and peak strain of damage sample depend on the difference of initial confining pressure and post-peak plastic deformation. The friction among crystal grains determines the strength behavior of flawed coarse marble under various loading paths. In the end, the effect of loading path on failure mode of intact and flawed coarse marble is also investigated. The present research provides increased understanding of the fundamental nature of rock failure under different loading paths.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号