首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Initiation and development of shear band (SB) in f.c.c. strain hardening polycrystals during rolling are modelled in terms of crystallographic texture. The constitutive law of the material is expressed in terms of the texture-dependent normalized yield surface and the critical shear stress which evolves with strain. The normalized yield surface is predicted by the Taylor model as a function of rolling texture. It is shown that a rounded vertex (RV) develops at the loading point as the rolling texture becomes more and more marked. A detailed characterization of the RV is carried out. It is found that the normalized curvature radius of the RV decreases from unity towards zero at very large strain. This allows for a small stress perturbation to induce a shear strain perturbation with a large orientation deviation of deformation. By linearized stability analysis, the condition for initiation of SB from the shear strain perturbation is obtained. Development of SB is analysed by solving the established governing equations of shear banding. It is shown that the conditions for SB initiation and saturation of shear localisation depend strongly on the texture. Based on this model problem, a long discussion is carried out which allows a better understanding of the basic physical origin and saturation of SB in strain-hardening polycrystals, as well as the effects of yield surface curvature and yield surface rotation whose general form is derived.  相似文献   

2.
Starting from some experimental observations on shear strength of stiff clays [3,2], a isotropic, geometrically non-linear second gradient elastoplastic model is proposed for pressure dependent, brittle geomaterials. The development of the model follows the general theory presented in [1]. Due to the internal length scale provided by the microstructure, the model is ideally suited for the analysis of failure problems in which strain localization into shear band occurs, see, e.g., [4,5].  相似文献   

3.
Summary By regarding geomaterials under loading as a mixture of intact and damaged parts, we investigate the influence of damage on the properties of strain localization in elastoplastic geomaterials at plane stress and plane strain. Conditions for the onset of strain localization including the effects of damage are derived for the cases of plane strain and plane stress. Discussed are the inclination of the localized band and the hardening modulus corresponding to the onset of strain localization. It is shown that the properties of the strain localization are dependent on the damage and the capacity of bearing hydrostatic pressure by the damaged part, and that damage may induce an earlier onset of strain localization and lead to instability of a geomaterial.accepted for publication 11 March 2004  相似文献   

4.
In order to simulate quasi-brittle failure in porous elastic solids, a continuum damage model has been developed within the framework of strain gradient elasticity. An essential ingredient of the continuum damage model is the local strain energy density for pure elastic response as a function of the void volume fraction, the local strains and the strain gradients, respectively. The model adopts Griffith’s approach, widely used in linear elastic fracture mechanics, for predicting the onset and the evolution of damage due to evolving micro-cracks. The effect of those micro-cracks on the local material stiffness is taken into account by defining an effective void volume fraction. Thermodynamic considerations are used to specify the evolution of the latter. The principal features of the model are demonstrated by means of a one-dimensional example. Key aspects are discussed using analytical results and numerical simulations. Contrary to other continuum damage models with similar objectives, the model proposed here includes the effect of the internal length parameter on the onset of damage evolution. Furthermore, it is able to account for boundary layer effects.  相似文献   

5.
Classical continuum models exhibit strong mesh dependency during softening. One method to regularize the problem is to introduce a length scale parameter via the nonlocal formulation. However, standard nonlocal enhancement (either by integral or gradient formulation) may serve only as a partial localization limiter for many material models. The “over-nonlocal” formulation, where the weight for the nonlocal value is greater than unity and the excesses compensated by assigning a negative weight to the local value, is able to fully regularize certain material models when standard nonlocal enhancement fails to do so. A plastic-damage model for concrete is formulated with this over-nonlocal enhancement via the gradient approach and the full regularizing capabilities demonstrated.  相似文献   

6.
In this paper we derive a strain gradient plate model from the three-dimensional equations of strain gradient linearized elasticity. The deduction is based on the asymptotic analysis with respect of a small real parameter being the thickness of the elastic body we consider. The body is constituted by a second gradient isotropic linearly elastic material. The obtained model is recognized as a strain gradient Reissner-Mindlin plate model. We also provide a mathematical justification of the obtained plate model by means of a variational weak convergence result.  相似文献   

7.
Strain gradients play a vital role in the prediction of size-effects in the deformation behavior of metals at the micrometer scale. At this scale the behavior of metals strongly depends on the dislocation distribution. In this paper, a dislocation density based strain gradient model is developed aiming at predictions of size-effects for structural components at this scale. For this model, the characteristic length is identified as the average distance of dislocation motion, which is deformation dependant and can be determined experimentally. The response of the model is compared to the strain gradient plasticity model of Huang et al. [Huang, Y., Qu, S., Hwang, K.C., Li, M., Gao, H., 2004. A conventional theory of mechanism-based strain gradient plasticity. Int. J. Plasticity 20, 753–782]. It is shown that the present strain gradient model, which only requires a physically measurable length-scale, can successfully predict size effects for a bar with an applied body force and for void growth.  相似文献   

8.
An analysis of the stress field under a dynamic load in strength design and fatigue life estimation is a topic of great importance. Based on the theory of vibrational displacement modal analysis, the principle and techniques of vibrational strain modal analysis are developed. The peculiarities of the strain transfer function matrix, the test approaches of it and the relation with the displacement transfer function are expounded. Resistance strain gauges are used to measure the strain transfer function and the modal parameters are identified on this basis. After that, the strain response expression and thereby the stress response expression are obtained.  相似文献   

9.
This paper focuses on the intergranular fracture of polycrystalline materials, where a detailed model at the meso-scale is translated onto the macro-level through a proposed homogenization theory. The bottom-up strategy involves the introduction of an additional macro-kinematic field to characterize the average displacement jump within the unit cell. Together with the standard macro-strain field, the underlying processes are propagated onto the macro-scale by imposing the equivalence of power and energy at the two scales. The set of macro-governing equations and constitutive relations are next extracted naturally as per standard thermodynamics procedure. The resulting homogenized microforce balance recovers the so-called ‘implicit’ gradient expression with a transient nonlocal interaction. The homogenized gradient damage model is shown to fully regularize the softening behavior, i.e. the structural response is made mesh-independent, with the damage strain correctly localizing into a macroscopic crack, hence resolving the spurious damage growth observed in many conventional gradient damage models. Furthermore, the predictive capability of the homogenized model is demonstrated by benchmarking its solutions against reference meso-solutions, where a good match is obtained with minimal calibrations, for two different grain sizes.  相似文献   

10.
11.
The stability problem of cylindrical shells is addressed using higher-order continuum theories in a generalized framework. The length-scale effect which becomes prominent at microscale can be included in the continuum theory using gradient-based nonlocal theories such as the strain gradient elasticity theories. In this work, expressions for critical buckling stress under uniaxial compression are derived using an energy approach. The results are compared with the classical continuum theory, which can be obtained by setting the length-scale parameters to zero. A special case is obtained by setting two length scale parameters to zero. Thus, it is shown that both the couple stress theory and classical continuum theory forms a special case of the strain gradient theory. The effect of various parameters such as the shell-radius, shell-length, and length-scale parameters on the buckling stress are investigated. The dimensions and constants corresponding to that of a carbon nanotube, where the length-scale effect becomes prominent, is considered for this investigation.  相似文献   

12.
We present a study on the dynamic stability of porous functionally graded(PFG) beams under hygro-thermal loading. The variations of the properties of the beams across the beam thicknesses are described by the power-law model. Unlike most studies on this topic, we consider both the bending deformation of the beams and the hygro-thermal load as size-dependent, simultaneously, by adopting the equivalent differential forms of the well-posed nonlocal strain gradient integral theory(NSGIT) which are s...  相似文献   

13.
In this paper, a novel size-dependent functionally graded(FG) cylindrical shell model is developed based on the nonlocal strain gradient theory in conjunction with the Gurtin-Murdoch surface elasticity theory. The new model containing a nonlocal parameter, a material length scale parameter, and several surface elastic constants can capture three typical types of size effects simultaneously, which are the nonlocal stress effect, the strain gradient effect, and the surface energy effects. With the help of Hamilton's principle and first-order shear deformation theory, the non-classical governing equations and related boundary conditions are derived. By using the proposed model, the free vibration problem of FG cylindrical nanoshells with material properties varying continuously through the thickness according to a power-law distribution is analytically solved, and the closed-form solutions for natural frequencies under various boundary conditions are obtained. After verifying the reliability of the proposed model and analytical method by comparing the degenerated results with those available in the literature, the influences of nonlocal parameter, material length scale parameter, power-law index, radius-to-thickness ratio, length-to-radius ratio, and surface effects on the vibration characteristic of functionally graded cylindrical nanoshells are examined in detail.  相似文献   

14.
In this article we study the influence of double strain gradient, reflecting microstructural inhomogeneities, on the instability regime of a thermoviscoplastic material caused by biaxial loading. A perturbation analysis proposed earlier by Dudzinski and Molinari [1991] is used. The gesults show the influence of the microstructural coefficient on the rate of growth of the instability for various values of strain hardening, strain rate sensitivity, and straining path. The role of optimal orientation is presented, and the cases of isothermal and anisothermal deformation are analysed. Our results are also compared with those predicted by the aforementioned analysis. Finally, a comparison of uniaxial and biaxial situations concerning the role of the microstructural parameter is presented.  相似文献   

15.
A size-dependent Kirchhoff micro-plate model is developed based on the strain gradient elasticity theory. The model contains three material length scale parameters, which may effectively capture the size effect. The model can also degenerate into the modified couple stress plate model or the classical plate model, if two or all of the material length scale parameters are taken to be zero. The static bending, instability and free vibration problems of a rectangular micro-plate with all edges simple supported are carried out to illustrate the applicability of the present size-dependent model. The results are compared with the reduced models. The present model can predict prominent size-dependent normalized stiffness, buckling load, and natural frequency with the reduction of structural size, especially when the plate thickness is on the same order of the material length scale parameter.  相似文献   

16.
The initial boundary value problem corresponding to a model of strain gradient plasticity due to [Gurtin, M., Anand, L., 2005. A theory of strain gradient plasticity for isotropic, plastically irrotational materials. Part I: Small deformations. J. Mech. Phys. Solids 53, 1624–1649] is formulated as a variational inequality, and analysed. The formulation is a primal one, in that the unknown variables are the displacement, plastic strain, and the hardening parameter. The focus of the analysis is on those properties of the problem that would ensure existence of a unique solution. It is shown that this is the case when hardening takes place. A similar property does not hold for the case of softening. The model is therefore extended by adding to it terms involving the divergence of plastic strain. For this extended model the desired property of coercivity holds, albeit only on the boundary of the set of admissible functions.  相似文献   

17.
Metallic materials display strong size effect when the characteristic length associated with plastic deformation is on the order of microns. This size effect cannot be explained by classical plasticity theories since their constitutive relations do not have an intrinsic material length. Strain gradient plasticity has been developed to extend continuum plasticity to the micron or submicron regime. One major issue in strain gradient plasticity is the determination of the intrinsic material length that scales with strain gradients, and several microbend test specimens have been designed for this purpose. We have studied different microbend test specimens using the theory of strain gradient plasticity. The pure bending specimen, cantilever beam, and the microbend test specimen developed by Stolken and Evans (Stolken, J.S., Evans, A.G., 1998. A microbend test method for measuring the plasticity length scale Acta Mater. 46, 5109–5115) are found suitable for the determination of intrinsic material length in strain gradient plasticity. However, the double cantilever beam (both ends clamped) is unsuitable since its deformation is dominated by axial stretching. The strain gradient effects significantly increase the bending stiffness of a microbend test specimen. The deflection of a 10-μm thick beam is only a few percent of that estimated by classical plasticity.  相似文献   

18.
In this study, non-linear free vibration of micro-plates based on strain gradient elasticity theory is investigated. A general form of Mindlin’s first-strain gradient elasticity theory is employed to obtain a general Kirchhoff micro-plate formulation. The von Karman strain tensor is used to capture the geometric non-linearity. The governing equations of motion and boundary conditions are obtained in a variational framework. The Homotopy analysis method is employed to obtain an accurate analytical expression for the non-linear natural frequency of vibration. For some specific values of the gradient-based material parameters, the general plate formulation can be reduced to those based on some special forms of strain gradient elasticity theory. Accordingly, three different micro-plate formulations are introduced, which are based on three special strain gradient elasticity theories. It is found that both geometric non-linearity and size effect increase the natural frequency of vibration. In a micro-plate having a thickness comparable with the material length scale parameter, the strain gradient effect on increasing the non-linear natural frequency is higher than that of the geometric non-linearity. By increasing the plate thickness, the strain gradient effect decreases or even diminishes. In this case, geometric non-linearity plays the main role on increasing the natural frequency of vibration. In addition, it is shown that for micro-plates with some specific thickness to length scale parameter ratios, both geometric non-linearity and size effect have significant role on increasing the frequency of non-linear vibration.  相似文献   

19.
A finite strain viscoplastic nonlocal plasticity model is formulated and implemented numerically within a finite element framework. The model is a viscoplastic generalisation of the finite strain generalisation by Niordson and Redanz (2004) [Journal of the Mechanics and Physics of Solids 52, 2431–2454] of the strain gradient plasticity theory proposed by Fleck and Hutchinson (2001) [Journal of the Mechanics and Physics of Solids 49, 2245–2271]. The formulation is based on a viscoplastic potential that enables the formulation of the model so that it reduces to the strain gradient plasticity theory in the absence of viscous effects. The numerical implementation uses increments of the effective plastic strain rate as degrees of freedom in addition to increments of displacement. To illustrate predictions of the model, results are presented for materials containing either voids or rigid inclusions. It is shown how the model predicts increased overall yield strength, as compared to conventional predictions, when voids or inclusions are in the micron range. Furthermore, it is illustrated how the higher order boundary conditions at the interface between inclusions and matrix material are important to the overall yield strength as well as the material hardening.  相似文献   

20.
On the basis of plasticity and fracture mechanics for quasi-brittle materials , this article presented a constitutive model for gradual softening behavior of joints of geomateri-als . Corresponding numerical tests are carried out at the local level. Characteristics of the model proposed are 1) plastic softening and dilatancy behavior are directly related to the fracture process of joint, and much less material and model parameters are required compared with those proposed by references ; 2) the process of decohesion coupled with friction-al sliding at both micro-scale and macro-scale is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号