首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The dynamic solution of a multilayered spherically isotropic piezoelectric hollow sphere subjected to radial dynamic loads is obtained. By the method of superposition, the solution is divided into two parts: one is quasi-static and the other is dynamic. The quasi-static part is derived by the state-space method, and the dynamic part is obtained by the method of separation of variables coupled with the initial parameter method as well as the orthogonal expansion technique. By using the quasi-static and dynamic parts, the electric boundary conditions as well as the electric continuity conditions, a Volterra integral equation of the second kind with respect to a function of time is derived, which can be solved successfully by means of the interpolation method. The displacements, stresses and electric potentials are finally obtained. The present method is suitable for a multilayered spherically isotropic piezoelectric hollow sphere consisting of arbitrary layers and subjected to arbitrary spherically symmetric dynamic loads. Finally, numerical results are presented and discussed.  相似文献   

2.
层合球面各向同性热释电空心球的瞬态响应   总被引:1,自引:0,他引:1  
运用叠加原理,将层合球面各向同性热释电空心球的球对称动力学问题的解分成准静态和动 态两部分,准静态部分首先运用状态空间法给出了显式表达式,然后运用分离变量法、初参 数法和特征函数展开技术,给出了动态部分的表示式,再结合内外表面上的电学边界条件和 界面上的电学连续条件,导出一个关于时间函数的第二类Volterra积分方程,运用插值法 可成功地给出此积分方程的高精度数值解,最终可求得原问题的位移、应力、电位移以及电 势的响应. 此方法适用任意层数且各层是任意厚度的层合热释电空心球作用随时间以任意形 式变化的球对称温度场. 文中还给出了数值结果.  相似文献   

3.
Dynamic analysis of a two-layered elasto-piezoelectric composite hollow sphere under spherically symmetric deformation is developed. An unknown function of time is first introduced in terms of the charge equation of electrostatics and then the governing equations of piezoelectric layer, in which the unknown function of time is involved, are derived. By the method of superposition, the dynamic solution for elastic and piezoelectric layers is divided into quasi-static and dynamic parts. The quasi-static part is treated independently by the state space method and the dynamic part is obtained by the separation of variables method. By virtue of the obtained quasi-static and dynamic parts, a Volterra integral equation of the second kind with respect to the unknown function of time is derived by using the electric boundary conditions for piezoelectric layer. Interpolation method is employed to solve the integral equation efficiently. The transient responses for elastic and electric fields are finally determined. Numerical results are presented and discussed.  相似文献   

4.
A theoretical method for analyzing the axisymmetric plane strain elastodynamic problem of a non-homogeneous orthotropic hollow cylinder is developed. Firstly, a new dependent variable is introduced to rewrite the governing equation, the boundary conditions and the initial conditions. Secondly, a special function is introduced to transform the inhomogeneous boundary conditions to homogeneous ones. By virtue of the orthogonal expansion technique, the equation with respect to the time variable is derived, of which the solution can be obtained. The displacement solution is finally obtained, which can be degenerated in a rather straightforward way into the solution for a homogeneous orthotropic hollow cylinder and isotropic solid cylinder as well as that for a non-homogeneous isotropic hollow cylinder. Using the present method, integral transform can be avoided and it can be used for hollow cylinders with arbitrary thickness and subjected to arbitrary dynamic loads. Numerical results are presented for a non-homogeneous orthotropic hollow cylinder subjected to dynamic internal pressure. The project supported by the National Natural Science Foundation of China (10172075 and 10002016)  相似文献   

5.
The dynamic behavior of a multilayered, perfectly bonded piezoelectric/magnetostrictive composite hollow cylinder under radial deformation is investigated. The superposition method, the state space method as well as the separation of variables method are elegantly integrated in the solution approach. The governing equations are finally transformed into two Volterra integral equations of the second kind with respect to two functions of time. The elastic, electric and magnetic fields are finally obtained according to solving the integral equations. Free vibrations and transient responses are demonstrated by numerical experiments.  相似文献   

6.
The theoretical study of the control of stress is developed for a rotating infinite hollow multilayered radially polarized piezoelectric cylinder. The exact solution is obtained by means of the state-space method. As an illustrative example, the distribution of the radial and tangential stresses in a rotating hollow internally pressurized five-layered piezoelectric cylinder subjected to different electric potential at the internal and external surfaces are performed. Numerical results show that the distribution of the stress can be controlled by applying appropriate electric potentials at the correct surfaces.  相似文献   

7.
By virtue of the separation of variables technique, the axisymmetric plane strain electroelastic dynamic problem of hollow cylinder is transferred to an integral equation about a function with respect to time, which can be solved successfully by means of the interpolation method. Then the solution of the displacements, stresses, electric displacements and electric potentials are finally obtained. The present method is suitable for the hollow cylinder with arbitrary thickness subjected to arbitrary mechanical and electrical loads. Numerical results are also presented.  相似文献   

8.
An elastodynamic solution for plane-strain response of functionally graded thick hollow cylinders subjected to uniformly-distributed dynamic pressures at boundary surfaces is presented. The material properties, except Poisson’s ratio, are assumed to vary through the thickness according to a power law function. To achieve an exact solution, the dynamic radial displacement is divided into two quasi-static and dynamic parts, and for each part, an analytical solution is derived. The quasi-static solution is obtained by means of Euler’s equation, and the dynamic solution is derived using the method of the separation of variables and the orthogonal expansion technique. The radial displacement and stress distributions are plotted for various functionally graded material (FGM) hollow cylinders under different dynamic loads, and the advantages of the presented method are discussed. The proposed analytical solution is suitable for analyzing various arrangements of hollow FGM cylinders with arbitrary thickness and arbitrary initial conditions, which are subjected to arbitrary forms of dynamic pressures distributed uniformly on their boundary surfaces.  相似文献   

9.
An elastodynamic solution for plane-strain response of functionally graded thick hollow cylinders subjected to uniformly-distributed dynamic pressures at boundary surfaces is presented. The material properties, except Poisson’s ratio, are assumed to vary through the thickness according to a power law function. To achieve an exact solution, the dynamic radial displacement is divided into two quasi-static and dynamic parts, and for each part, an analytical solution is derived. The quasi-static solution is obtained by means of Euler’s equation, and the dynamic solution is derived using the method of the separation of variables and the orthogonal expansion technique. The radial displacement and stress distributions are plotted for various functionally graded material (FGM) hollow cylinders under different dynamic loads, and the advantages of the presented method are discussed. The proposed analytical solution is suitable for analyzing various arrangements of hollow FGM cylinders with arbitrary thickness and arbitrary initial conditions, which are subjected to arbitrary forms of dynamic pressures distributed uniformly on their boundary surfaces.  相似文献   

10.
For the thermoelastic dynamic axisymmetric problem of a finite orthotropic hollow cylinder, one comes closer to reality to involve the effect of axial strain than to consider the plane strain case only. However, additional mathematical difficulties should be encountered and a different solution procedure should be developed. By the separation of variables, the thermoelastic axisymmetric dynamic problem of an orthotropic hollow cylinder taking account of the axial strain is transformed to a Volterra integral equation of the second kind for a function of time, which can be solved efficiently and quickly by the interpolation method. The solutions of displacements and stresses are obtained. It is noted that the present method is suitable for an orthotropic hollow cylinder with an arbitrary thickness subjected to arbitrary axisymmetric thermal loads. Numerical comparison is made to show the effect of the axial strain on the displacements and stresses. The project supported by the National Natural Science Foundation of China (10172075) and China Postdoctoral Science Foundation (20040350712)  相似文献   

11.
The article presents an analytical solution for magneto–thermo–electro–elastic problems of a piezoelectric hollow cylinder placed in an axial magnetic field subjected to arbitrary thermal shock, mechanical load and transient electric excitation. Using an interpolation method solves the Volterra integral equation of the second kind caused by interaction among magnetic, thermal, electric and mechanical fields, the electric displacement is determined. Thus, the exact expressions for the transient responses of displacement, stresses, electric displacement, electric potential and perturbation of the magnetic field vector in the piezoelectric hollow cylinder are obtained by means of Hankel transforms, Laplace transforms, and inverse Laplace transforms. From sample numerical calculations, it is seen that the present method is suitable for a piezoelectric hollow cylinder subjected to arbitrary thermal shock, mechanical load and transient electric excitation, and the result carried out may be used as a reference to solve other transient coupled problems of magneto–thermo–electro–elasticity.  相似文献   

12.
The free vibration of an arbitrarily thick orthotropic piezoelectric hollow cylinder with a functionally graded property along the thickness direction and filled with a non-viscous compressible fluid medium is investigated. The analysis is directly based on the three-dimensional exact equations of piezoelasticity using the so-called state space formulations. The original functionally graded shell is approximated by a laminate model, of which the solution will gradually approach the exact one when the number of layers increases. The effect of internal fluid can be taken into consideration by imposing a relation between the fluid pressure and the radial displacement at the interface. Analytical frequency equations are derived for different electrical boundary conditions at two cylindrical surfaces. As particular cases, free vibration of multi-layered piezoelectric hollow cylinder and wave propagation in infinite homogeneous cylinder are studied. Numerical comparison with available results is made and dispersion curves predicted from the present three-dimensional analysis are given. Numerical examples are further performed to investigate the effects of various parameters on the natural frequencies.  相似文献   

13.
The paper presents an analytical method to solve thermo-electro-elastic transient response in piezoelectric hollow structures subjected to arbitrary thermal shock, sudden mechanical load and electric excitation. Volterra integral equation of the second kind caused by interaction between elastic deformation and electric field is solved by using an interpolation method. Thus, the exact expressions for the transient responses of displacement, stresses, electric displacement and electric potential in the piezoelectric hollow structures are obtained by means of Hankel transform, Laplace transform, and their inverse transforms. In Section 2, based on spherical coordinates, the governing equation of thermo-electro-elastic transient responses in a piezoelectric hollow sphere is found and the associated numerical results are carried out. In Section 3, based on cylindrical coordinates, the governing equation of thermo-electro-elastic transient responses in a non-homogeneous piezoelectric hollow cylinder is found and the corresponding numerical results are carried out. The results carried out may be used as a reference to solve other transient coupled problems of thermo-electro-elasticity in piezoelectric structures.  相似文献   

14.
对多层电磁弹性圆柱壳内波的轴向传播进行了分析。根据柱坐标系下电磁弹性多层结构的几何方程、平衡方程和本构方程,推导出了两个层间变量所满足的状态方程。通过状态方程的解和层间变量连续性条件,得到了多层圆柱体内外表面层间变量的传递关系。最后利用边界条件,导出了波在传播时所满足的频散方程,并求得该结构的模态参数。以一个三层的压电/压磁材料组成的柱壳结构作为数值算例,计算出波在其中轴向传播时的频散关系和模态参数,并对计算结果进行了分析。  相似文献   

15.
王熙  龚育宁 《力学学报》1992,24(1):93-101
本文给出了弹性动力学轴对称问题基本方程的一种理论解。它由满足非齐次边界条件的准静态解和满足齐次边界条件的动态解的叠加构成。在求得准静态解后,代入基本方程,得到动态解所需满足的非齐次方程。由相应的齐次方程的特征值问题,定义了有限Hankel变换。通过这种变换及Laplace变换,求得动态解,从而得到了一个完整的理论解。文中通过对一个实例求解,表明该方法求解过程简便,实用,求解结果精确。  相似文献   

16.
Summary By introduction of a special dependent variable and separation of variables technique, the electroelastic dynamic problem of a nonhomogeneous, spherically isotropic hollow sphere is transformed to a Volterra integral equation of the second kind about a function of time. The equation can be solved by means of the interpolation method, and the solutions for displacements, stresses, electric displacements and electric potential are obtained. The present method is suitable for a piezoelectric hollow sphere with an arbitrary thickness subjected to arbitrary mechanical and electrical loads. Numerical results are presented at the end.The work was supported by the National Natural Science Foundation of China (No. 10172075 and No. 10002016).  相似文献   

17.
压电空心圆柱中波的传播   总被引:5,自引:0,他引:5  
魏建萍  苏先樾 《力学学报》2004,36(4):484-490
应用三维压电弹性体轴对称模型对压电空心圆柱中波的传播进行了研究. 发现在 圆柱中是否具有压电性质会对波的传播带来显著的差异. 当波长趋向于零时,在压电圆柱中 拟P波的波速渐进趋向于横观各向同性弹性体的准P波波速,而非压电圆柱中拟P波的波速 渐进趋向于一维杆模型中的P波波速;在压电圆柱中拟SV波存在驻波现象. 圆柱中的SH波 同电场无关,所以在压电圆柱和非压电圆柱中SH波具有相同的频散曲线. 应用积分变 换方法将圆柱的控制方程同其侧边界条件相结合,得到了一组动力学方程. 针对具体的侧边 界条件,得到相对应的波导条件和频散方程. 在此基础上通过数值计算模拟了圆柱受到端部 应力脉冲激励后的瞬态响应. 同时讨论了空心圆柱的半径比对轴向波传播的影响.  相似文献   

18.
有限长压电层合简支板自由振动的三维精确解   总被引:13,自引:2,他引:13  
基于三维弹性理论和压电理论,导出了有限长矩形压电层合简支板的动力学方程及相应的边界条件,给出了一种求解压电层合板自由振动三维精确解的方法;分析了正、逆向压电效应对层合板振动频率的影响.本文所述的方法和结果对于求解其他三维动态问题,验证、比较其他简化模型、有限元计算结果以及工程应用都有指导意义.  相似文献   

19.
This is part II of the work concerned with finding the stress intensity factors for a circular crack in a solid with piezoelectric behavior. The method of solution involves reducing the problem to a system of hypersingular integral equations by application of the unit concentrated displacement discontinuity and the unit concentrated electric potential discontinuity derived in part I [1]. The near crack border elastic displacement, electric potential, stress and electric displacement are obtained. Stress and electric displacement intensity factors can be expressed in terms of the displacement and the potential discontinuity on the crack surface. Analogy is established between the boundary integral equations for arbitrary shaped cracks in a piezoelectric and elastic medium such that once the stress intensity factors in the piezoelectric medium can be determined directly from that of the elastic medium. Results for the penny-shaped crack are obtained as an example.  相似文献   

20.
Based on the electro-mechanical coupling theory and the laminate elasticity theory, an electro-elastic solution is obtained for the fiber-reinforced cylindrical composites with integrated piezoelectric actuators when subjected to mechanical and electrical loadings. The hybrid composite is composed of three parts: internal piezoelectric actuator, fiber-reinforced laminated interlayer, and external piezoelectric actuator. The general solution in each piezoelectric smart layer is obtained by introducing three undetermined constants, and the general solutions in the fiber-reinforced laminated interlayer are obtained by means of the state-space method. The mechanical behaviors of the hybrid fiber-reinforced cylindrical composites are investigated. The illustrative examples show that the fiber’s angle, the stacking sequence as well as the applied electric loading strongly affect the physical fields in the fiber-reinforced multilayered cylindrical composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号