首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We investigate using direct numerical simulations with grids up to 1536(3) points, the rate at which small scales develop in a decaying three-dimensional MHD flow both for deterministic and random initial conditions. Parallel current and vorticity sheets form at the same spatial locations, and further destabilize and fold or roll up after an initial exponential phase. At high Reynolds numbers, a self-similar evolution of the current and vorticity maxima is found, in which they grow as a cubic power of time; the flow then reaches a finite dissipation rate independent of the Reynolds number.  相似文献   

3.
The scaling properties of three-dimensional magnetohydrodynamic turbulence with finite magnetic helicity are obtained from direct numerical simulations using 512(3) modes. The results indicate that the turbulence does not follow the Iroshnikov-Kraichnan phenomenology. The scaling exponents of the structure functions can be described by a modified She-Leveque model zeta(p) = p/9+1-(1/3)(p/3), corresponding to basic Kolmogorov scaling and sheetlike dissipative structures. In particular, we find zeta(2) approximately 0.7, consistent with the energy spectrum E(k) approximately k(-5/3) as observed in the solar wind, and zeta(3) approximately 1, confirming a recent analytical result.  相似文献   

4.
We study the three-dimensional forced-dissipated Gross-Pitaevskii equation. We force at relatively low wave numbers, expecting to observe a direct energy cascade and a consequent power-law spectrum of the form kα. Our numerical results show that the exponent α strongly depends on how the inverse particle cascade is attenuated at ks lower than the forcing wave-number. If the inverse cascade is arrested by a friction at low ks, we observe an exponent which is in good agreement with the weak wave turbulence prediction k−1. For a hypo-viscosity, a k−2 spectrum is observed which we explain using a critical balance argument. In simulations without any low k dissipation, a condensate at k=0 is growing and the system goes through a strongly turbulent transition from a 4-wave to a 3-wave weak turbulence acoustic regime with evidence of k−3/2 Zakharov-Sagdeev spectrum. In this regime, we also observe a spectrum for the incompressible kinetic energy which formally resembles the Kolmogorov k−5/3, but whose correct explanation should be in terms of the Kelvin wave turbulence. The probability density functions for the velocities and the densities are also discussed.  相似文献   

5.
Energy cascade rates and Kolmogorov’s constant for non-helical steady magnetohydrodynamic turbulence have been calculated by solving the flux equations to the first order in perturbation. For zero cross helicity and space dimensiond = 3, magnetic energy cascades from large length-scales to small length-scales (forward cascade). In addition, there are energy fluxes from large-scale magnetic field to small-scale velocity field, large-scale velocity field to small-scale magnetic field, and large-scale velocity field to large-scale magnetic field. Kolmogorov’s constant for magnetohydrodynamics is approximately equal to that for fluid turbulence (≈ 1.6) for Alfvén ratio 05 ≤r A ≤ ∞. For higher space-dimensions, the energy fluxes are qualitatively similar, and Kolmogorov’s constant varies asd 1/3. For the normalized cross helicity σc →1, the cascade rates are proportional to (1 − σc)/(1 + σc , and the Kolmogorov’s constants vary significantly with σcc.  相似文献   

6.
7.
We show that a recently proposed [J. Fleischer, P.H. Diamond, Phys. Rev. E 58, R2709 (1998)] one-dimensional Burgers-like model for magnetohydrodynamics (MHD) is in effect identical to existing models for drifting lines and sedimenting lattices. We use the model to demonstrate, contrary to claims in the literature, that the energy spectrum of MHD turbulence should be independent of mean magnetic field and that cross-correlations between the noise sources for the velocity and magnetic fields cannot change the structure of the equations under renormalisation. We comment on the scaling and the multiscaling properties of the stochastically forced version of the model. Received 29 October 1998 and Received in final form 8 December 1998  相似文献   

8.
9.
Motivated by recent analytic predictions, we report numerical evidence showing that in driven incompressible magnetohydrodynamic turbulence the magnetic- and velocity-field fluctuations locally tend to align the directions of their polarizations. This dynamic alignment is stronger at smaller scales with the angular mismatch between the polarizations decreasing with the scale lambda approximately as theta(lambda) is proportional to lambda(1/4). This can naturally lead to a weakening of the nonlinear interactions and provide an explanation for the energy spectrum E(k) is proportional to k(-3/2) that is observed in numerical experiments of strongly magnetized turbulence.  相似文献   

10.
Spectral direct numerical simulations of incompressible MHD turbulence at a resolution of up to 1024(3) collocation points are presented for a statistically isotropic system as well as for a setup with an imposed strong mean magnetic field. The spectra of residual energy, E(R)k=|E(M)k - E(K)k|, and total energy, Ek=E(K)k+E(M)k, are observed to scale self-similarly in the inertial range as E(R)k approximately k(-7/3), E(k)approximately k(-5/3) (isotropic case) and E(R)(k(perpendicular) approximately k(-2)(perpendicular), E(k(perpendicular))approximately k(-3/2)(perpendicular) (anisotropic case, perpendicular to the mean field direction). A model of dynamic equilibrium between kinetic and magnetic energy, based on the corresponding evolution equations of the eddy-damped quasinormal Markovian closure approximation, explains the findings. The assumed interplay of turbulent dynamo and Alfvén effect yields E(R)k approximately kE2(k), which is confirmed by the simulations.  相似文献   

11.
李睿劬  李存标 《物理学报》2005,54(1):481-482
经过进一步地研究,发现在本刊2002年8月的“平板边界层中湍流的发生与混沌动力学之间的联系”一文中,尚存在着一些数据处理上的问题.对此做了修正. 关键词: 湍流发生 混沌动力学 分形  相似文献   

12.
In this paper we give a formulation of two-dimensional (2D) collisionless magnetohydrodynamic (MHD) turbulence that includes the effects of both electron inertia and electron pressure (or parallel electron compressibility) and is applicable to strongly magnetized collisionless plasmas. We place particular emphasis on the departures from the 2D classical MHD turbulence results produced by the collisionless MHD effects. We investigate the fractal/multi-fractal aspects of spatial intermittency. The fractal model for intermittent collisionless MHD turbulence appears to be able to describe the observed k−1 spectrum in the solar wind. Multi-fractal scaling behaviors in the inertial range are first deduced, and are then extrapolated down to the dissipative microscales. We then consider a parabolic-profile model for the singularity spectrum f (α), as an explicit example of a multi-fractal scenario. These considerations provide considerable insights into the basic mechanisms underlying spatial intermittency in 2D fully developed collisionless MHD turbulence.  相似文献   

13.
利用光纤湍流测量系统获得了合肥西郊科学岛上气象观测场内下垫面平坦的水面上方0.48m、草地上方1.8m和23m高处的大气折射率起伏的观测数据,采用R/S分析法计算了近地层大气光学湍流的赫斯特指数和分形维数,统计分析了分形维数的日变化特征及概率分布特征。结果表明:对于一天的不同时段,分形维数在一定范围内动态变化,且中午时段相对稳定;在三种下垫面条件下,全天分形维数的值大多在1.3~1.4之间,其最可几概率位于1.35处,从均值来看,草地上方1.8m的分形维数最大,水面上方0.48m次之,草地上方23m处最小。最后,初步探讨了近地层大气光学湍流分形维数、间歇性指数和湍流发展程度的相关性。  相似文献   

14.
高速飞行器磁控阻力特性   总被引:3,自引:0,他引:3       下载免费PDF全文
姚霄  刘伟强  谭建国 《物理学报》2018,67(17):174702-174702
采用低磁雷诺数磁流体数学模型,对外加磁场下的高超声速半球体流场进行数值模拟.选取三种简单理想磁场(轴向、径向、周向均布磁场),分析了不同磁场类型对流场结构、气动阻力与洛伦兹阻力的影响及作用机理.研究发现,轴向磁场径向"挤压"效应使得激波外形凸出,且壁面静压存在"饱和现象";径向磁场存在轴向"外推"效应,较大的磁场强度会导致肩部形成高温区;周向磁场下感应电场的存在导致增阻效果很差.进而对比了两种相同驻点磁感应强度特殊分布磁场(偶极子磁场、螺线管磁场)下的流场,发现了不同于理想磁场的径向"扩张"效应.按增阻效果从大到小依次为径向磁场、螺线管磁场、轴向磁场、偶极子磁场、周向磁场.  相似文献   

15.
Renormalized viscosity, renormalized resistivity, and various energy fluxes are calculated for helical magnetohydrodynamics using perturbative field theory. The calculation is of firstorder in perturbation. Kinetic and magnetic helicities do not affect the renormalized parameters, but they induce an inverse cascade of magnetic energy. The sources for the large-scale magnetic field have been shown to be (1) energy flux from large-scale velocity field to large-scale magnetic field arising due to non-helical interactions and (2) inverse energy flux of magnetic energy caused by helical interactions. Based on our flux results, a primitive model for galactic dynamo has been constructed. Our calculations yield dynamo time-scale for a typical galaxy to be of the order of 108 years. Our field-theoretic calculations also reveal that the flux of magnetic helicity is backward, consistent with the earlier observations based on absolute equilibrium theory.  相似文献   

16.
O. Chkhetiani 《JETP Letters》1999,69(9):664-668
The evolution of the correlation characteristics in three-dimensional isotropic electronic magnetohydrodynamic turbulence is investigated. Universal exact relations between the longitudinal and longitudinal-transverse two-point triple correlations of the components of the fluctuational magnetic fields and the rates of dissipation of the magnetic helicity and energy are obtained in the inertial range. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 9, 626–630 (10 May 1999)  相似文献   

17.
We investigate the influence of a uniform magnetic field B(0)=B(0)e( parallel) on energy decay laws in incompressible magnetohydrodynamic (MHD) turbulence. The nonlinear transfer reduction along B(0) is included in a model that distinguishes parallel and perpendicular directions, following a phenomenology of Kraichnan. We predict a slowing down of the energy decay due to anisotropy in the limit of strong B(0), with distinct power laws for energy decay of shear- and pseudo-Alfvén waves. Numerical results from the kinetic equations of Alfvén wave turbulence recover these predictions, and MHD numerical results clearly tend to follow them in the lowest perpendicular planes.  相似文献   

18.
This Letter presents a calculation of the power spectra of weakly turbulent Alfvén waves and fast magnetosonic waves ("fast waves") in low- plasmas. It is shown that three-wave interactions transfer energy to high-frequency fast waves and, to a lesser extent, high-frequency Alfvén waves. High-frequency waves produced by MHD turbulence are a promising explanation for the anisotropic heating of minor ions in the solar corona.  相似文献   

19.
自仿射分形在高能碰撞多重产生中的应用   总被引:1,自引:0,他引:1  
当分形体在不同方向的标度规律不同时,它就是自仿射而不是自相似.本文指出,高能多重产生中的分形属于这种情况,并建议了一种用实验检验自仿射性和测量自仿射的特征量──赫斯特指数的方法  相似文献   

20.
车碧轩  李小康  程谋森  郭大伟  杨雄 《物理学报》2018,67(1):15201-015201
为了深入研究脉冲感应推力器的工作原理,预测其推进性能,建立了一种耦合外部电路的磁流体力学模型,实现了对加速通道内等离子体二维流场结构演化过程及驱动电路放电过程的同步耦合求解.模拟计算所得美国MK-1推力器加速通道内的等离子体瞬态参数分布及推力器比冲、效率等性能参数均与实验数据一致;计算结果成功复现了推力器的工作物理图景.借助这一新模型,实现了对电路-等离子体双向耦合作用的定量分析,分析结果表明:耦合等离子体导致驱动电路等效电阻增大,电感减小;激励线圈与等离子体之间的互感随等离子体整体远离线圈表面而逐渐减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号