首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The synthesis and characterisation of a C6 hydrocarbon linked porphyrin dimer and its zinc complex is described. From fluorescence quantum yields and excited singlet and triplet state lifetimes, recorded for the dimers and the corresponding monomer species, it is suggested that the dimeric porphyrins exist in solution in open and closed conformations. The open conformations retain photophysical properties similar to those of the relevant monomeric species but the closed conformations do not fluoresce.  相似文献   

2.
The photophysics of two symmetric triads, (ZnP)2PBI and (H2P)2PBI, made of two zinc or free-base porphyrins covalently attached to a central perylene bisimide unit has been investigated in dichloromethane and in toluene. The solvent has been shown to affect not only quantitatively but also qualitatively the photophysical behavior. A variety of intercomponent processes (singlet energy transfer, triplet energy transfer, photoinduced charge separation, and recombination) have been time-resolved using a combination of emission spectroscopy and femtosecond and nanosecond time-resolved absorption techniques yielding a very detailed picture of the photophysics of these systems. The singlet excited state of the lowest energy chromophore (perylene bisimide in the case of (ZnP)2PBI, porphyrin in the case of (H2P)2PBI) is always quantitatively populated, besides by direct light absorption, by ultrafast singlet energy transfer (few picosecond time constant) from the higher energy chromophore. In dichloromethane, the lowest excited singlet state is efficiently quenched by electron transfer leading to a charge-separated state where the porphyrin is oxidized and the perylene bisimide is reduced. The systems then go back to the ground state by charge recombination. The four charge separation and recombination processes observed for (ZnP)2PBI and (H2P)2PBI in dichloromethane take place in the sub-nanosecond time scale. They obey standard free-energy correlations with charge separation lying in the normal regime and charge recombination in the Marcus inverted region. In less polar solvents, such as toluene, the energy of the charge-separated states is substantially lifted leading to sharp changes in photophysical mechanism. With (ZnP)2PBI, the electron-transfer quenching is still fast, but charge recombination takes place now in the nanosecond time scale and to triplet state products rather than to the ground state. Triplet-triplet energy transfer from the porphyrin to the perylene bisimide is also involved in the subsequent deactivation of the triplet manifold to the ground state. With (H2P)2PBI, on the other hand, the driving force for charge separation is too small for electron-transfer quenching, and the deactivation of the porphyrin excited singlet takes place via intersystem crossing to the triplet followed by triplet energy transfer to the perylene bisimide and final decay to the ground state.  相似文献   

3.
Free base and zinc porphyrins functionalized with cyclooctatetraene (COT), a molecule known as a good triplet-state quencher, have been obtained and characterized in detail by structural, spectral, and photophysical techniques. Substitution with COT leads to a dramatic decrease of the intrinsic lifetime of the porphyrin triplet. As a result, photostability in oxygen-free solution increases by two to three orders of magnitude. In non-degassed solutions, improvement of photostability is about tenfold for zinc porphyrins, but the free bases become less photostable. Similar quantum yields of photodegradation in free base and zinc porphyrins containing the COT moiety indicate a common mechanism of photochemical decomposition. The new porphyrins are expected to be much less phototoxic, since the quantum yield of singlet oxygen formation strongly decreases because of the shorter triplet lifetime. The reduction of triplet lifetime should also enhance the brightness and reduce blinking in porphyrin chromophores emitting in single-molecule regime, since the duration of dark OFF states will be shorter.  相似文献   

4.
The synthesis and photophysical characterization of two sets of zinc porphyrin platinum acetylide complexes are reported. The two sets of molecules differ in the way the bridging phenyl-ethynyl unit is attached to the porphyrin ring. One set is attached via an ethynyl unit on the β position, while the other set is attached via a phenyl unit on the meso position of the porphyrin. These were compared with previously studied complexes where attachment was made via an ethynyl unit on the meso position. Femtosecond transient absorption measurements showed in all systems a rapid quenching of the porphyrin singlet state. Electron transfer is suggested as the quenching mechanism, followed by an even faster recombination to form both the porphyrin ground and triplet excited states. This is supported by the variation in quenching rate and porphyrin triplet yield with solvent polarity, and the observation of an intermediate state in the meso-phenyl linked systems. The different linking motifs between the dyads resulted in significant variations in electron transfer rates.  相似文献   

5.
Abstract— The absorption and emission spectra, fluorescence quantum yields and lifetimes and triplet state properties of a boronated porphyrin, the tetrakiscarborane carboxylate ester of 2,4-(α,β-dihydroxyethyl) deuteroporphyrin IX (BOPP), have been determined. This compound is an alternative photodynamic therapy (PDT) agent that exhibits highly selective tumor localization, with the potential to be used in conjunction with boron neutron capture therapy. The photophysical characteristics of BOPP are similar to other porphyrins and it exhibits marked aggregation and acid-base speciation under typical physiological conditions. In particular, protonation of the porphyrin imino (-N=) nitrogens occurs in the pH 5–7 region and influences the photophysical properties. Time-resolved confocal fluorescence imaging of the intracellular distribution of BOPP in C6 glioma cells indicates distinct subcellular localization and heterogeneity of emission. The results are interpreted and discussed in terms of the possible mechanisms for cellular uptake and localization.  相似文献   

6.
The influence of the thiophene ring on the ground and excited state properties of the porphyrin ring is investigated, when substituted at the meso-position. A series of mono-, di-, tri-, and tetra- meso-thien-2-yl porphyrins are studied and discussed with respect to the reference compounds zinc(II)-5,10,15,20-tetra(thien-2'-yl)porphyrin ( 1a) and zinc(II)-5,10,15,20-tetraphenylporphyrin (ZnTPP). The extended conjugated system zinc(II)-5-(5'-(5'-ethynyl-2'-thiophenecarboxaldehyde)thien-2'-yl)-10,15,20-triphenylporphyrin ( 4d) is also studied and shows enhanced charge transfer character due to the presence of the terminal aldehyde accepting group. A detailed analysis of ground and excited state UV-vis absorption, steady-state and time-resolved fluorescence, laser flash photolysis, and electrochemical data all point toward substantial electronic communication between the central Zn(II) porphyrin ring and the meso-thien-2-yl substituents, which is evident from excited state charge transfer character.  相似文献   

7.
The Gram‐negative Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum are major causative agents of aggressive periodontal disease. Due to increase in the number of antibiotic‐resistant bacteria, antimicrobial Photodynamic therapy (aPDT) seems to be a plausible alternative. In this work, photosensitization was performed on Gram‐positive and Gram‐negative bacteria in pure culture using new‐age cationic porphyrins, namely mesoimidazolium‐substituted porphyrin derivative ( ImP ) and pyridinium‐substituted porphyrin derivative ( PyP ). The photophysical properties of both the sensitizers including absorption, fluorescence emission, quantum yields of the triplet excited states and singlet oxygen generation efficiencies were evaluated in the context of aPDT application. The studied porphyrins exhibited high ability to accumulate into bacterial cells with complete penetration into early stage biofilms. As compared with ImP, PyP was found to be more effective for photoinactivation of bacterial strains associated with periodontitis, without any signs of dark toxicity, owing to its high photocytotoxicity.  相似文献   

8.
The facile synthesis of Group 9 RhIII porphyrin‐aza‐BODIPY conjugates that are linked through an orthogonal Rh?C(aryl) bond is reported. The conjugates combine the advantages of the near‐IR (NIR) absorption and intense fluorescence of aza‐BODIPY dyes with the long‐lived triplet states of transition metal rhodium porphyrins. Only one emission peak centered at about 720 nm is observed, irrespective of the excitation wavelength, demonstrating that the conjugates act as unique molecules rather than as dyads. The generation of a locally excited (LE) state with intramolecular charge‐transfer (ICT) character has been demonstrated by solvatochromic effects in the photophysical properties, singlet oxygen quantum yields in polar solvents, and by the results of density functional theory (DFT) calculations. In nonpolar solvents, the RhIII conjugates exhibit strong aza‐BODIPY‐centered fluorescence at around 720 nm (ΦF=17–34 %), and negligible singlet oxygen generation. In polar solvents, enhancements of the singlet‐oxygen quantum yield (ΦΔ=19–27 %, λex=690 nm) have been observed. Nanosecond pulsed time‐resolved absorption spectroscopy confirms that relatively long‐lived triplet excited states are formed. The synthetic methodology outlined herein provides a useful strategy for the assembly of functional materials that are highly desirable for a wide range of applications in material science and biomedical fields.  相似文献   

9.
The photophysical properties for a series of free-base arylethynyl porphyrins and the corresponding trans-disubstituted tetraphenylporphyrin (H(2)TPP) derivatives lacking arylethynyl functionalities have been studied via electronic absorption and emission spectroscopy in both neutral and diacid forms. Enhanced substituent effects on porphyrin absorption spectra are observed in the arylethynyl porphyrins relative to the H(2)TPP derivatives, owing to the presence of the ethynyl spacer that allows for a coplanar geometry between the porphyrin macrocycle and the appended phenyl substituents. Upon protonation, both series of porphyrins exhibit substantially red shifted absorption and emission spectra and enhanced oscillator strengths, with the magnitude of the spectral shifts being more substantial in the presence of the ethynyl functionalities. Spectral features of the arylethynyl porphyrin bearing p-dimethylamino substituents closely resemble those previously classified as "hyperporphyrin spectra" and are indicative of excited-state charge-transfer character. Protonation of both series of porphyrins results in reduced fluorescence lifetimes and enhanced nonradiative decay rates, and the impact of protonation on these parameters is attenuated in the presence of the arylethynyl functionalities. Our results coupled with previous structural data showing that arylethynyl porphyrins exhibit less structural distortion upon diacid formation relative to H(2)TPP further substantiate the proposal that significant alteration of porphyrin photophysical properties upon diacid formation can be attributed to nonplanar structural distortions induced by protonation.  相似文献   

10.
Abstract— Several porphyrin esters used as models for polystyrene-bound porphyrins have been prepared and their excited states have been studied by laser flash photolysis, IR phosphorescence of singlet molecular oxygen, O2(1Δg), and steady-state fluorescence. The photophysical properties of the porphyrin esters in solution are affected by the presence of nitro group(s) in the chain. In this case, an important decrease in φf, φT and φδ (to ca 0.7–0.4 of the value for the parent dimethyl ester) is observed. This is mainly due to intramolecular electron-transfer quenching [by the nitro group(s)] of the first excited singlet state of the porphyrin. The thermodynamic feasibility of this deactivation pathway has been confirmed polarographically. Quenching of the porphyrin triplet state and of O2(1Δg) by the nitro groups is negligible. The present conclusions explain also the results obtained previously for the photooxidation of bilirubin sensitized by the parent insoluble polystyrene-bound porphyrins. In that case the photooxidation rates were correlated directly with the quantum yield of O2(1Δg) production by the sensitizer. The consequences of these results for the use of polystyrene-bound porphyrins in sensitized photooxidation processes are discussed.  相似文献   

11.
Synthesis, photophysical and metal ion recognition properties of a series of amino acid‐linked free‐base and Zn‐porphyrin derivatives (5–9) are reported. These porphyrin derivatives showed favorable photophysical properties including high molar extinction coefficients (>1 × 105 m ?1 cm?1 for the Soret band), quantum yields of triplet excited states (63–94%) and singlet oxygen generation efficiencies (59–91%). Particularly, the Zn‐porphyrin derivatives, 6 and 9 showed higher molar extinction coefficients, decreased fluorescence quantum yields, and higher triplet and singlet oxygen quantum yields compared to the corresponding free‐base porphyrin derivatives. Further, the study of their interactions with various metal ions indicated that the proline‐conjugated Zn‐porphyrins (6 and 9) showed high selectivity toward Cu2+ ions and signaled the recognition through changes in fluorescence intensity. Our results provide insights on the role of nature of amino acid and metallation in the design of the porphyrin systems for application as probes and sensitizers.  相似文献   

12.
Gold porphyrins are often used as electron-accepting chromophores in donor-acceptor complexes for the study of photoinduced electron transfer, and they can also be involved in triplet-triplet energy-transfer interactions with other chromophores. Since the lowest excited singlet state is very short-lived (240 fs), the triplet state is usually the starting point for the transfer reactions, and it is therefore crucial to understand its photophysics. The triplet state of various gold porphyrins has been reported to have a lifetime of around 1.5 ns at room temperature and to have a biexponential decay both in emission and in transient absorption with decay times of around 10 and 100 micros at 80 K. In this paper, the triplet photophysics of two gold porphyrins (Au(III) 5,15-bis(3,5-di-tert-butylphenyl)-2,8,12,18-tetraethyl-3,7,13,17-tetramethylporphyrin and Au(III) 5,10,15,20-tetra(3,5-di-tert-butylphenyl)porphyrin) are studied by steady-state and time-resolved absorption and emission spectroscopy over a wide temperature range (4-300 K). The study reveals the existence of a dark state with an approximate lifetime of 50 ns, which was not previously observed. This state acts as an intermediate between the short-lived singlet and the triplet state manifold. In addition, we present DFT calculations, in which the core electrons of the central metal were replaced by a pseudopotential to account for the relativistic effects, which suggest that the lowest excited singlet state is an optically forbidden ligand-to-metal charge-transfer (LMCT) state. This LMCT state is an obvious candidate for the experimentally observed dark state, and it is shown to dictate the photophysical properties of gold porphyrins by acting as a gate for triplet state formation versus direct return to the ground state.  相似文献   

13.
Transition‐metal complex triplet photosensitizers are versatile compounds that have been widely used in photocatalysis, photovoltaics, photodynamic therapy (PDT) and triplet–triplet annihilation (TTA) upconversion. The principal photophysical processes in these applications are the intermolecular energy transfer or electron transfer. One of the major challenges facing these triplet photosensitizers is the short triplet‐state lifetime, which is detrimental to the above‐mentioned photophysical processes. In order to address this challenge, transition‐metal complexes showing long‐lived triplet excited states are highly desired. This review article summarizes the development of this fascinating area, including the molecular design rationales, the principal photophysical properties, and the applications of these complexes in PDT and TTA upconversion.

  相似文献   


14.
Spectroscopic, redox, computational, and electron transfer reactions of the covalently linked zinc porphyrin–triphenylamine–fulleropyrrolidine system are investigated in solvents of varying polarity. An appreciable interaction between triphenylamine and the porphyrin π system is revealed by steady‐state absorption and emission, redox, and computational studies. Free‐energy calculations suggest that the light‐induced processes via the singlet‐excited porphyrin are exothermic in benzonitrile, dichlorobenzene, toluene, and benzene. The occurrence of fast and efficient charge‐separation processes (≈1012 s?1) via the singlet‐excited porphyrin is confirmed by femtosecond transient absorption measurements in solvents with dielectric constants ranging from 25.2 (benzonitrile) to 2.2 (benzene). The rates of the charge separation processes are much less solvent‐dependent, which suggests that the charge‐separation processes occur at the top region of the Marcus parabola. The lifetimes of the singlet radical‐ion pair (70–3000 ps at room temperature) decrease substantially in more polar solvents, which suggests that the charge‐recombination process is occurring in the Marcus inverted region. Interestingly, by utilizing the nanosecond transient absorption spectral technique we can obtain clear evidence about the existence of triplet radical‐ion pairs with relatively long lifetimes of 0.71 μs (in benzonitrile) and 2.2 μs (in o‐dichlorobenzene), but not in toluene and benzene due to energetic considerations. From the point of view of mechanistic information, the synthesized zinc porphyrin–triphenylamine–fulleropyrrolidine system has the advantage that both the lifetimes of the singlet and triplet radical‐ion pair can be determined.  相似文献   

15.
取代锌酞菁的合成及光物理性质   总被引:14,自引:0,他引:14  
取代锌酞菁的合成及光物理性质张先付,许慧君(中国科学院感光化学研究所,北京,100101)关键词取代酞菁,合成,光物理性质,电荷转移癌症的光动力疗法及其机制是目前光医学、光生物学及光化学的前沿课题[1]。临床应用的光疗药物──血卟啉有一些难以克服的致...  相似文献   

16.
A series of multiporphyrin clusters has been synthesized and characterized in which there exists a logical gradient for either energy or electron transfer between the porphyrins. A central free-base porphyrin (FbP), for example, is equipped with peripheral zinc(II) porphyrins (ZnP) which act as ancillary light harvesters and transfer excitation energy to the FbP under visible light illumination. Additional energy-transfer steps occur at the triplet level, and the series is expanded by including magnesium(II) porphyrins and/or tin(IV) porphyrins as chromophores. Light-induced electron transfer is made possible by incorporating a gold(III) porphyrin (AuP(+)) into the array. Although interesting by themselves, these clusters serve as control compounds by which to understand the photophysical processes occurring within a three-stage dendrimer comprising an AuP(+) core, a second layer formed from four FbP units, and an outer layer containing 12 ZnP residues. Here, illumination into a peripheral ZnP leads to highly efficient electronic energy transfer to FbP, followed by charge transfer to the central AuP(+). Charge recombination within the resultant charge-shift state is intercepted by secondary hole transfer to the ZnP, which occurs with a quantum yield of around 20%. The final charge-shift state survives for some microseconds in fluid solution at room temperature.  相似文献   

17.
A novel class of palladium(II) and platinum(II) complexes bearing tridentate bis‐aryloxide triazole ligands was prepared by using straightforward and high‐yielding synthetic routes. The complexes were fully characterized and the molecular structures of four derivatives were unambigously determined by single‐crystal X‐ray diffractometric analyses. For the most promising luminescent PtII derivatives, further experimental investigations were carried out to characterize their photophysical features and to ascertain the nature of the emitting excited state by means of electronic absorption, steady‐state, and time‐resolved emission techniques in different conditions. In degassed fluid solution the complexes displayed broad and featureless photoluminescence with λem=522–585 nm, excited‐state lifetime up to few microseconds and quantum yield (PLQY) up to 17 %, depending on the nature of both ancillary ligand and substituent on the tridentate ligand. Computational investigation using density functional theory and time‐dependent DFT were performed to gain insight into the electronic processes responsible for optical transitions and structure–photoluminescence relationship. Jointly, experimental and theoretical characterization indicated that the radiative transition arises from an excited state with admixed triplet‐manifold metal‐to‐ligand charge transfer and ligand‐centered (3MLCT/3LC) character. We elucidated the modulation of the photophysical properties upon variation of substituents for this new family of complexes.  相似文献   

18.
Curcumin, with its recent success as an anti-tumor agent, has been attracting researchers from wide ranging fields of physics, chemistry, biology and medicine. The chemical structure of curcumin has two o-methoxy phenols attached symmetrically through α,β-unsaturated β-diketone linker, which also induces keto–enol tautomerism. Due to this, curcumin exhibits many interesting photophysical and photochemical properties. The absorption maximum of curcumin is 408–430 nm in most of the organic solvents, while the emission maximum is very sensitive to the surrounding solvent medium (460–560 nm) and the Stokes’ shift varied from 2000 to 6000 cm−1. The fluorescence quantum yield in most of the solvents is low and reduced significantly in presence of water. The fluorescence lifetime is short (<1 ns) and displayed multi-exponential decay profile. The singlet excited states of curcumin decay by non-radiative processes contributed mainly by intra- and intermolecular proton transfer with very low intersystem crossing efficiency. Polarity, π-bonding nature, hydrogen bond donating and accepting properties of the solvent influence the excited state photophysics of curcumin in a complex manner. The triplet excited states of curcumin absorb at 720 nm and react with oxygen to produce singlet molecular oxygen. The photodegradation of curcumin produces smaller phenols and the photobiological activity of curcumin is due to the generation of reactive oxygen species.Being lipophilic in nature, the water solubility of curcumin could be enhanced upon the addition of surfactants, polymers, cyclodextrins, lipids and proteins. Changes in the absorption and fluorescence properties of curcumin have been found useful to follow its interaction and site of binding in these systems. Curcumin fluorescence could be employed to follow the unfolding pattern and structural changes in proteins. The intracellular curcumin showed more fluorescence in tumor cells than in normal cells and fluorescence spectroscopy could be used to monitor its preferential localization in the membrane of tumor cells. This review, presents the current status of research on the photophysical, photochemical and photobiological processes of curcumin in homogeneous solutions, bio-mimetics and living cells. Based on these studies, the possibility of developing curcumin, as a bimolecular sensitive fluorescent probe is also discussed.  相似文献   

19.
Abstract—Picosecond absorption spectroscopy was used to determine the intramolecular energy relaxation processes occurring in Ni(II). Pd(II), Pt(II), and Zn(II) protoporphyrin IX dimethyl ester. Picosecond data on the rate of ground state repopulation and the kinetics of a transient intermediate made it possible to determine the lifetimes of the excited singlet state of Ni, Pd, and Zn porphyrins as 10±2ps, 19±3ps, and 2.6±0.5 ps, respectively, and<8 ps for Pt porphyrin. On the basis of these data. the nonfluorescent and nonphosphorescent property of Ni porphyrin can be interpreted in terms of internal conversion to a lower lying singlet d-d level which is not the case for the strongly phosphorescent Pd and Pt porphyrins.  相似文献   

20.
Photochemical and photophysical measurements were conducted on peripheral and non-peripheral tetrakis- and octakis(4-benzyloxyphenoxy)-substituted zinc phthalocyanines (1, 2 and 3). General trends are described for photodegradation, and fluorescence quantum yields, triplet lifetimes and triplet quantum yields as well as singlet oxygen quantum yields of these compounds in dimethylsulphoxide (DMSO) and toluene. The fluorescence of the complexes is quenched by benzoquinone (BQ), and fluorescence quenching properties are investigated in DMSO and toluene. The effects of the solvents on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (1, 2 and 3) are also reported. Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号